Attendance PUSH
Communication Protocol

PUSH SDK

Date: July 2020

Software Version: 2.4.1
Doc Version: 3.7

English

PUSH SDK Attendance PUSH Communication Protocol

Table of Contents

1 ABSTRACT 4
1.1 FEATURES 4
1.2 ENCODING 4
1.3 INTRODUCTION TO HTTP PROTOCOL 4

2 DEFINITIONS 6

3 FUNCTIONS 7
3.1 SPECIFICATION OF HYBRID IDENTIFICATION PROTOCOI 7

4 PROCESS 9

5 INITIALIZATION INFORMATION EXCHANGE 10

6 EXCHANGE OF PUBLIC KEYS (WHERE ENCRYPTION OF COMMUNICATIONS IS SUPPORTED) 15

7 EXCHANGE FACTOR (WHERE COMMUNICATION ENCRYPTION IS SUPPORTED) 16

8 PUSHING CONFIGURATION INFORMATION 17

9 UPLOADING UPDATE INFORMATION 19

10 HEARTBEAT 21

11 UPLOADING DATA 23
11.1 UPLOADING MODE 23
11.2 UPLOADING ATTENDANCE RECORD 23
11.3 UPLOADING ATTENDANCE PHOTO 25
11.4 UPLOADING OPERATION RECORD 27
11.5 UPLOADING USER INFORMATION 29
11.6 UPLOADING IDENTITY CARD INFORMATION 31
11.7 UPLOADING IDENTITY CARD ATTENDANCE RECORD 36
11.8 UPLOADING IDENTITY CARD ATTENDANCE PHOTO 38
11.9 UPLOADING FINGERPRINT TEMPLATE 40
11.10 UPLOADING FACE TEMPLATE 43
11.11 UPLOADING FINGER VEIN TEMPLATE 45
11.12 UPLOADING UNIFIED TEMPLATES 48
11.13 UPLOADING USER PHOTO, 52
11.14 UPLOADING DATA PACKETS 54
11.15 UPLOADING COMPARISON PHOTO 56
11.16 UPLOADING ERROR LOG 59

12 GET COMMAND 62
12.1 DATA COMMAND 63

12.1.1 UPDATE SUBCOMMAND 63
12.1.2 DELETE SUBCOMMAND 76
12.1.3 QUERY SUBCOMMAND 80

Page |2

PUSH SDK

Attendance PUSH Communication Protocol

12.2 CLEAR COMMAND 82
12.2.1 CLEARING ATTENDANCE RECORD 82
12.2.2 CLEARING ATTENDANCE PHOTO 83
12.2.3 CLEARING ALL DATA 83
12.24 CLEARING UNIFIED TEMPLATE 83

12.3 CHECK COMMAND 84
12.3.1 CHECKING DATA UPDATE 84
12.3.2 CHECKING AND TRANSMITTING NEW DATA 84
12.3.3 AUTOMATICALLY VERIFYING ATTENDANCE DATA 85

12.4 CONFIGURING OPTION COMMAND 85
12.4.1 OPTION FOR SETTING THE CLIENT 85
12.4.2 OPTION FOR REFRESHING THE CLIENT 85
12.4.3 SENDING CLIENT INFORMATION TO THE SERVER 86

12.5 FiLE COMMAND 86
12.5.1 GETTING FILE IN THE CLIENT 86
12.5.2 SENDING FILE TO THE CLIENT 87

12.6 REMOTE ENROLLMENT COMMAND 89
12.6.1 ENROLLING USER FINGERPRINT 89
12.6.2 ENROLLING CARD NUMBER 89
12.6.3 ENROLLING FACE, PALM PRINT (UNIFIED TEMPLATES) 90

12.7 CONTROL COMMAND 90
12.7.1 REBOOTING THE CLIENT 90
12.7.2 OUTPUTTING THE DOOR UNLOCKING SIGNAL 91
12.7.3 CANCELING THE ALARM SIGNAL OUTPUT 91

12.8 OTHER COMMANDS 91
12.8.1 EXECUTING THE SYSTEM COMMAND 91
12.8.2 ONLINE UPDATE 92
12.8.3 BACKGROUND VERIFICATION 93

13 COMMAND REPLY 95
14 REMOTE ATTENDANCE 97
APPENDIX 1 98
APPENDIX 2 99
APPENDIX 3 100
APPENDIX 4 101
APPENDIX 5 101
APPENDIX 6 102
APPENDIX 7 103
APPENDIX 8 104
APPENDIX 9 107
APPENDIX 10 BIOMETRIC TYPE INDEX DEFINITION 108

Page |3

PUSH SDK Attendance PUSH Communication Protocol

Abstract

The Push protocol is a data protocol which is defined based on the Hyper Text Transmission Protocol
(HTTP). Established on a TCP/IP connection, the Push protocol is applicable to the data interchange
between a server and an attendance device or an access control device, and defines the transmission
formats of data (including user information, biological recognition templates, and attendance records) and
the command format for control equipment.

Features

Active uploading of new data

Resuming transmission from breakpoint

The client initiates all behaviors such as uploading data or performing commands issued by the
server

Encoding

Most data transmitted via the protocol is consisted of ASCII characters, but individual fields involve coding,
for example, the user name. Therefore, the following rules are made for data of this type.

For Chinese data, the GB2312 encoding is used

For other languages, the UTF-8 encoding is used
Currently, the following data involves this encoding
User names in a user information table

Content of the short messages in a short message table

Introduction to HTTP Protocol

Since the Push protocol is a data protocol defined based on the HTTP protocol, a brief introduction to the
HTTP is given hereby. Skip this part if you are already familiar with it.

The HTTP is a request/response protocol. The format of a request sent by a client to a server is a request
method, a URI and a protocol version number, and then a MIME-like message containing modifiers, client
information and a possible message body. The format of a response sent by the server to the client is a
status line followed by a MIME-like message containing server information, entity meta-information and
possible entity-body content. The status line contains the protocol version number of the message and a
success code or error code. The following is an example.

Page |4

PUSH SDK Attendance PUSH Communication Protocol

A request from the client:

GET http: //113.108.97.187: 8081/iclock/accounts/login/?next=/iclock/data/iclock/ HTTP/1.1
User-Agent: Fiddler
Host: 113.108.97.187:8081

A response from the server:

HTTP/1.1 200 OK

Server: nginx/0.8.12

Date: Fri, 10 Jul 2015 03: 53: 16 GMT

Content-Type: text/html; charset=utf-8

Transfer-Encoding: chunked

Connection: close

Content-Language: en

Expires: Fri, 10 Jul 2015 03:53: 16 GMT

Vary: Cookie, Accept-Language

Last-Modified: Fri, 10 Jul 2015 03: 53: 16 GMT

ETag: "c487be9e924810a8c2e293dd7f5b0ab4"

Pragma: no-cache

Cache-Control: no-store

Set-Cookie: csrftoken=60fb55cedf203c197765688ca2d7bf9%e; Max-Age=31449600; Path=/
Set-Cookie: sessionid=06d37fdc8f36490c701af2253af79f4a; Path=/

0

HTTP communication usually occurs under a TCP/IP connection. The default port is TCP 80, but other ports
can also be used. However, the HTTP protocol might also be implemented via other protocols. Only
reliable transmission is expected from the HTTP (Note: HTTP is usually established on a transport layer
protocol), therefore, any protocol providing such guarantee can be used.

Page |5

PUSH SDK Attendance PUSH Communication Protocol

Definitions

In this document, the format of definition reference is: ${ServerlP}

ServerlP: The IP address of the server
ServerPort: A port of the server

XXX: An unknown value

Value 1\Value 2\Value 3\...... \Value n: Value 1\Value 2\Value 3\...... \Value n
Required: Mandatory

Optional: Selectable

SerialNumber: Serial number (it can be formed by characters, numbers, or combination of
charcters+numbers)

NUL: Null (\0)

SP: A space

LF: A line break (\n)

HT: A tab character (\t)

DataRecord: A data record
CmdRecord: A command record
CmdID: The ID of a command
CmdDesc: Command description
Pin: ID

Time: Attendance time

Status: Attendance status

Verify: Verification mode

Workcode: A workcode

Reserved: A reserved field

OpType: An operation type

OpWho: An operator

OpTime: Operation time

BinaryData: A binary data flow
TableName: The name of a data table
SystemCmd: A system command
Key: A key

Value: A value

FilePath: A file path

URL: A resource location

Page |6

PUSH SDK Attendance PUSH Communication Protocol

Functions

The following functions supported by the Push protocol are described from the view of a client.

Initializing Information Exchange
Uploading Update Information
Uploading Data

Downloading Command
Command Reply

Remote Attendance

Specification of Hybrid Identification Protocol

With more and more types of biometrics, the instructions issued by different types of biometrics are also
different, making software docking protocols very difficult.

In order to simplify the development process, the specifications for biological template/ photo issue/
upload/ query/ delete are unified.

Hybrid identification protocol docking process:

1. The server issues the following two parameters to the device through the [Initialization Information
Exchange] interface: MultiBioDataSupport, MultiBioPhotoSupport.

2. The device uploads the following 5 parameters to the server through the [Pushing Configuration
Information] interface: MultiBioDataSupport, MultiBioPhotoSupport, MultiBioVersion,
MaxMultiBioDataCount, MaxMultiBioPhotoCount. See [Pushing Configuration Information] interface
description for details.

3. Both the device and the server will determine the finally supported hybrid identification template/
photo type based on the MultiBioDataSupport and MultiBioPhotoSupport parameters pushed by
each other.

For example:
Device side: MultiBioDataSupport=0:1:0:0:0:0:0:0:0:1, MultiBioPhotoSupport =0:0:0:0:0:0:0:0:0:1
Server side: MultiBioDataSupport=0:0:0:0:0:0:0:0:0:1, MultiBioPhotoSupport= 0:0:0:0:0:0:0:0:0:1

The device supports fingerprint templates, visible light face templates, and visible light face photos. The
software supports face templates and visible light face photos. Because the software does not support
fingerprint templates, finally after the device docking with the software, it only support visible light face
templates and visible light face photos.

Hybrid identification protocol unified upload/ issue bio-templates format:

After successfully connecting to the hybrid identification protocol, a unified template format can be used
for the types supported by the device and the server.

1) The server issues the templates to the device

Page |7

PUSH SDK Attendance PUSH Communication Protocol

Unified use of [Issue Unified Templates] interface.

2)

The server issues the photos to the device

Unified use of [Issue Comparison Photos] interface.

3)

The server queries the template data

Unified use of [Query Unified Templates] interface.

4)

The sever queries the quantity of templates

Unified use of [Query the Quantity of Unified Templates] interface.

5)

The device uploads the templates to the server

Unified use of [Upload Unified Templates] interface.

6)

The device uploads the comparison photos to the server

Unified use of [Upload Comparison Photos] interface.

Hybrid identification protocol unified upload templates/ photos quantity interface:

1.

For devices that support hybrid identification protocol, the maximum number of templates/ photos
supported by the current device will be pushed to the server at the registration interface:
MaxMultiBioDataCount, MaxMultiBioPhotoCount.

The device can upload the quantity of photos/ templates saved by the current device in real time
through the [Pushing Configuration Information] interface.

Hybrid identification protocol specification real-time upload of unified templates and photos:

1.

The bio-templates/ comparison photos registered by the device will be uploaded to the server in real
time.

Upload interface refer to [upload unified templates] and [upload comparison photos].

You can use PostBackTmpFlag to specify whether you want the device to return the unified templates
when the software issues the comparison photos.

For specific interface, please refer to [Issue Comparison Photos].

Hybrid identification protocol provides optimization strategies:

For devices that support both templates and photos issuing, the server can determine the device template

version number based on the MultiBioVersion parameter uploaded by the device. If the server has saved

the template of the current version number, the template can be issued first instead of comparison photos.

Note: To issue the comparison photos, the device needs to extract photos into templates, which is less

efficient than directly issuing templates.

Page |8

PUSH SDK Attendance PUSH Communication Protocol

Process

Between a client and a server that both use the Push protocol, a request of "Initialization Information
Exchange" must be firstly initiated by the client successfully and then other functions can be used, such as
uploading data, obtaining server commands, uploading update information, and replying server
commands. These functions are not necessarily in order but dependent to the development of the client
application, as shown in the figure below.

HTTP PUSH protocol flow chart

1. The device will get its configuration information from server when start.

GET /iclock/cdata?SN=918291029 & options=all

<

GET OPTION FROM: 1234567
Stamp=82983982
OpStamp=9238883

2. Device actively gets command from server per defined time (* second)

GET /iclock/getrequest’SN=918291029

Y

<

C:122:INFO -
C:123:-DATAUSER PIN=852 Name=Richard —

3. Device returns the result to the server after executing command
POST /iclock/devicecm d?SN=918291029

0K ——oX.

A

<

4. Device will upload them to the server when checking there is the newly enrolled data and attendance record.

POST /iclock/cdata?SN=1234567 &Stam p=26

-+
“+

OK

Page |9

PUSH SDK Attendance PUSH Communication Protocol

Initialization Information Exchange

The client initiates a request to and sends corresponding configuration information to the server, and the
server replies to the client with corresponding configuration information after receiving the request. Only
when the client obtains the corresponding configuration information, the exchange is successful. The
configuration information is exchanged in a specified format as shown below:

A request message from the client:

GET /iclock/cdata?SN=5%{SerialNumber}&options=all&pushver=${XXX}&language=${XXX}&pushcommke
y=${XXX} HTTP/1.1
Host: ${ServerlP}: ${ServerPort}

Annotation:

HTTP request method: GET method
URI: /iclock/cdata

HTTP protocol version: 1.1

Client configuration information:

SN: ${Required} Client's serial number

options: ${Required} Obtaining server configuration parameters, and only the value "all" is available curr
ently

pushver: ${Optional} latest Push protocol version of the device supported by a newly-developed client s
oftware, and is of the 2.2.14 version or higher. See “Appendix 6”.

language: ${Optional} languages supported by the client, better supported by a newly developed client
so that the server knows the language the current equipment uses. See "Appendix 2".

pushcommbkey: ${Optional} ciphertext information for binding the client and the server, allowing the sof
tware to determine whether the equipment is authorized or not. The value differs fordifferent equipmen
t. This parameter needs to be supported by the client only when it is supported by the server.

Host header field: ${Required}

Other header fields: ${Optional}

A normal response from the server :

HTTP/1.1 200 OK
Date: ${XXX}
Content-Length: ${XXX}

Page |10

PUSH SDK Attendance PUSH Communication Protocol

GET OPTION FROM: ${SerialNumber}${LF}${XXX}Stamp=S${XXX}${LF}ErrorDelay=${XXX}${LF}Delay=${XX
XIS{LF}TransTimes=${XXX}${LF}TransInterval=${XXX}${LF}TransFlag=${XXX}${LF}TimeZone=S${XXX}${LF}
Realtime=${XXX}${LF}Encrypt=${XXX}${LF}ServerVer=${XXX}${LF}PushProtVer=${XXX}${LF}PushOptions
Flag=${XXX}${LF}PushOptions=${XXX}

Annotation:
HTTP status line: Defined according to the standard HTTP protocol
HTTP response header field:

Date header field: ${Required} This header field is used for server time synchronization in GMT time form
at, for example, Date: Fri, 03 Jul 2015 06:53:01 GMT

Content-Length header field: Based on the HTTP 1.1 protocol, this header field is usually used to specify t
he data length of a response entity. If the entity size is uncertain, header fields Transfer-Encoding: chunk
ed, Content-Length and Transfer-Encoding are supported, all of which are standard definitions of the HT
TP protocol.

Server configuration information:

The description in the first line must be this: GET OPTION FROM: ${SerialNumber}, with the ${LF} separat
ing configuration information.

${SerialNumber} is the serial number of the request initiated by the client. The configuration information
is in key=value pairs, with a ${LF} separating two configurations.

${XXX}Stamp: Timestamps for all kinds of data types, currently supporting the following:

S{XXX} Data type

ATTLOG Attendance record
OPERLOG Operation log
ATTPHOTO Attendance photo
BIODATA Unified Templates
IDCARD Identity card information
ERRORLOG Error log

Purpose of timestamp mark design: When the client uploads data, the corresponding timestamp mark is
uploaded. The server is responsible for recording this mark. When the equipment reboots, the client initi
ates a request for initialization of information exchange, and the server sends a series of marks to the clie
nt, realizing the function of resuming transmission from breakpoint.

Timestamp mark flaw: As time modification is permitted and the uncertainty of time change is possible, t
he client may not correctly determine which data has been uploaded to the server and which has not, an
d this leads to server data loss.

Application of timestamp on server: Currently, the server has only one application of the timestamp mar

Page |1

PUSH SDK Attendance PUSH Communication Protocol

k. When the server needs to reupload all corresponding data, it sets the corresponding timestamp mark t
0 0. See this function at "Get Command - Control Command - Check Data Update".

Timestamp discard at client side: In the Push design for new framework firmware, no timestamp is used
to mark a cut-off point of data uploading. However, for compatibility with old servers, timestamp marks
are also sent. Actually, it realizes only the function of data reuploading when the mark is set to 0, so the
server does not need to differentiate whether the client has discarded a timestamp or not.

ErrorDelay: Interval time for the client to reconnect to the server after networking connection failure, and
the recommended value is 30~300s.

Delay: Interval for the client to connect to the server when the networking is normal (s), that is, the functi
on of requesting "Get Command" by client. The recommended value is 2~60s. When a rapid response is r
equired, a smaller value can be set, but this will increase the pressure on the server.

TransTimes: Time at which the client checks for and transmits new data regularly (in a 24-hour format: ho
ur: minute) and multiple times are separated by semicolons. Up to 10 times are supported. For example,
TransTimes=00: 00;14: 00

Translnterval: Interval for the client to check and transmit new data (in minute), and no check is perform
ed when it is set to 0. For example, TransInterval=1

TransFlag: Identifying the data to be uploaded by the client automatically to the server, and two formats
are supported.

Format I: TransFlag=1111000000...... , each digit representing a data type. O for forbidding automatic up
loading of this data type, 1 for allowing automatic uploading of this data type.

Data type on each digit

Attendance record
Operation log
Attendance photo
Enrolling a new fingerprint
Enrolling a new user
Fingerprintimage
Changing user information
Changing a fingerprint
New enrolled face
10 User picture
11 Work code
12 Comparison photo
Format Il: TransFlag=TransData AttLog${HT}OpLog${HT}AttPhoto......

ONOULTDSA WN =

O

Data types marked by strings

AttLog Attendance log

OplLog Operation log

AttPhoto Attendance photo
EnrollUser Enrolling a new user
ChgUser Changing user information

Page |12

PUSH SDK Attendance PUSH Communication Protocol

EnrollFP Enrolling a new fingerprint
ChgFP Changing a fingerprint
FPImag Fingerprintimage

FACE New enrolled face

UserPic User picture

WORKCODE Work code
BioPhoto Comparison photo

During new client development: Please support both formats simultaneously. When the server sends dat
a in format | with all values set to 0 (TransFlag=0000000000), only uploading attendance photos is suppo
rted.

During new server development: Only format Il needs to be supported.

TimeZone: Specify the time zone where the server is located, primarily for server time synchronization. S
ee the Date header field in [Get Command](#downloadcmd). This value is an integerand designed to sup
port a whole time zone, half time zone and 1/4 time zone.

For-12 < TimeZone < 12, it is a whole time zone in the unit of hour. For example, TimeZone=4 means th
e East 4 zone.

For TimeZone > 60 or TimeZone < -60, it can mean a half time zone or 1/4 time zone in the unit of minut
e. For example, TimeZone=330 means a half of the East 5 time zone.

Realtime: Whether the client transmits new records in real time.1 means that data is transmitted to the s
erver as soon as it is generated, while 0 means data is transmitted at the time defined by the TransTimes
and TransInterval.

Encrypt: Whether to transmit data after encryption, to support the occasion of communicationencryptio
n, this parameter should be set to 1.

EncryptFlag: The identity of data encryption.
Example: EncryptFlag = 10000000

Bit Date type

1 attendance record

Currently, only version 2.3.0 of this protocol is supported, and only the encryption of attendance records
is supported. Rc4 is used for encryption.

ServerVer: Protocol version and time (format to be determined), which are supported by the server, and i
t must be set to 2.2.14 or above for a newly-developed server.

PushProtVer: The server is developed according to which protocol version, please refer to (appendix 6).

PushOptionsFlag: Whether the software supports the device push configuration parameter request, 0 is
not supported, 1 is supported, and it is not supported by default when it is not set.

PushOptions: The software requires the device to push the parameter list, format :PushOptions=key1,key

Page |13

PUSH SDK Attendance PUSH Communication Protocol

2,keys,...... ,keyN, such as PushOptions=FingerFunOn,FaceFunOn.

ATTPHOTOBase64: Attendance photo base64 identity. 1: base64 encoding, other occasions is not base64
encoding.

MultiBioDataSupport: Supports multi-modal biometric template parameters. The type is defined bit by b
it. Different types are separated by colons, 0 means not supported, 1 means supported. The supported v
ersion number, such as: 0: 1: 1: 0: 0: 0: 0: 0: 0: 0, indicating support for fingerprint template and near-infra
red face template.

MultiBioPhotoSupport: Supports multi-modal biometric photo parameters. The type is defined bit by bit.
Different types are separated by colons, 0 means not supported, 1 means supported. The supported ver
sion number, such as: 0: 1: 1: 0: 0: 0: 0: 0: 0: 0, indicating support for fingerprint photo and near-infrared f
ace photo.

Example:

A request from the client:

GET /iclock/cdata?SN=0316144680030&options=all&pushver=2.2.14&language=83&pushcommkey=4a9
594af164f2b9779b59e8554b5df26 HTTP/1.1

Host: 58.250.50.81: 8011

User-Agent: iClock Proxy/1.09

Connection: close

Accept: */*

A response from the server:

HTTP/1.1 200 OK

Server: nginx/1.6.0

Date: Fri, 03 Jul 2015 06: 53: 01 GMT
Content-Type: text/plain
Content-Length: 190

Connection: close

Pragma: no-cache

Cache-Control: no-store

GET OPTION FROM: 0316144680030
ATTLOGStamp=None
OPERLOGStamp=9999
ATTPHOTOStamp=None
ErrorDelay=30

Delay=10

TransTimes=00: 00;14: 05
TranslInterval=1
TransFlag=TransData AttLog OpLog AttPhoto EnrollUser ChgUser EnrollFP ChgFP UserPic
TimeZone=8

Realtime=1

Encrypt=None

Page |14

PUSH SDK Attendance PUSH Communication Protocol

Exchange of Public Keys (where encryption of

communications is supported)

The functional device pushes the public key of the device and receives the public key of the server

returned by the server.

A request message from the client:

POST /iclock/exchange?SN=5$(SerialNumber)&type=publickey
Host: ${ServerlP}:${ServerPort}
Content-Length: ${XXX}

PublicKey=${XXX}
Annotation:
HTTP request method: POST method
URI: /iclock/ exchange
HTTP protocol version: 1.1
Host header field: ${Required}
Other header fields: ${Optional}

PublicKey: The device PublicKey returned by calling the encryption library.

A normal response from the server :

HTTP/1.1 200 OK
Server: ${XXX}

Set-Cookie: ${XXX}; Path=/; HttpOnly
Content-Type: application/push;charset=UTF-8
Content-Length: ${XXX}

Date: ${XXX}

PublicKey=${XXX}

Annotation:

PublicKey: The server PublicKey returned by the server.

Page |15

PUSH SDK Attendance PUSH Communication Protocol

Exchange factor (where communication encryption

is supported)

This function pushes the device factor and receives the server factor returned by the server.

A request message from the client:

POST /iclock/exchange?SN=$(SerialNumber)&type=factors
Host: ${ServerlP}:5${ServerPort}
Content-Length: ${XXX}

......

Factors=${XXX}

Annotation:

HTTP request method: POST method
URI: /iclock/ exchange

HTTP protocol version: 1.1

Host header field: ${Required}

Other header fields: ${Optional}

Factors: The device factor returned by calling the encryption library.

A normal response from the server :

HTTP/1.1 200 OK
Server: $S{XXX}

Set-Cookie: ${XXX}; Path=/; HttpOnly
Content-Type: application/push;charset=UTF-8
Content-Length: ${XXX}

Date: ${XXX}

Factors=${XXX}

Annotation:

Factors: The server factor returned by the server.

Page |16

PUSH SDK Attendance PUSH Communication Protocol

Pushing Configuration Information

The functional device proactively pushes relevant configuration information, which can be designated by
the device or the server (see "PushOptions" in "Exchanging Initialization Information" for more
information). Any change to configuration information is proactively pushed to the server.

Request message from the client.
POST /iclock/cdata?SN=${SerialNumber}&table=options HTTP/1.1
Host: ${ServerlP}.${ServerPort}
Content-Length: ${XXX}

......

S{key}=${Value},S{key}=${Value},S{key}=${Value}...... ,S{key}=${Value}

UserPicURLFunOn: Supports issuing user photos by URL.
Hybrid identification protocol adds the following $ {key}:

MultiBioDataSupport: Supports multi-modal bio-template parameters. The type is defined bit by bit. Diff
erent types are separated by colons, 0 means not supported, 1 means supported. The supported version
number, such as: 0: 1: 1: 0: 0: 0: 0: 0: 0: 0, indicating support for fingerprint template and near-infrared fac
e template.

MultiBioPhotoSupport: Supports multi-modal biometric photo parameters. The type is defined bit by bit.
Different types are separated by colons, 0 means not supported, 1 means supported. The supported ver
sion number, such as: 0: 1: 1: 0: 0: 0: 0: 0: 0: 0, indicating support for fingerprint photo and near-infrared f
ace photo.

MultiBioVersion: The multi-modal biometric data version. Different types are separated by colons, 0 mea
ns not supported, T means supported. The supported version number, such as: 0: 10: 0: 7: 0: 0: 0: 0: 0: O, i
ndicating support for fingerprint algorithm10.0 and near-infrared face algorithm?7.0.

MultiBioCount: Supports multi-modal biometric data version parameters. The type is defined bit by bit.
Different types are separated by colons, 0 means not supported, 1 means supported. The supported vers
ion number, such as: 0: 100: 200: 0: 0: 0: 0: 0: 0: 0, indicating support for 100 fingerprints and 200 near-infr
ared faces.

MaxMultiBioDataCount: Supports maximum number of multi-modal bio-templates. The type is defined
bit by bit. Different types are separated by colons, 0 means not supported, T means supported. The supp
orted maximum number of templates, such as: 0: 10000: 2000: 0: 0: 0: 0: 0: 0: 0, indicating support for the
maximum number of fingerprint templates is 10000 and the maximum number of near-infrared face te
mplates is 2000.

MaxMultiBioPhotoCount: Supports maximum number of multi-modal biometric photos. The type is defi
ned bit by bit. Different types are separated by colons, 0 means not supported, 1 means supported. The s
upported maximum number of photos, such as: 0: 10000: 2000: 0: 0: 0: 0: 0: 0: 0, indicating support for th
e maximum number of fingerprint photos is 10000 and the maximum number of near-infrared face phot
0s is 2000.

Page |17

PUSH SDK Attendance PUSH Communication Protocol

Annotation:
HTTP Request Method: POST method
URI: /iclock/cdata
HTTP Version: 1.1
Client Configuration Information:
table=options
Host Header Field: ${Required}
Other Header Field: ${Optional}

Normal response message from the server
HTTP/1.1 200 OK
Content-Length: ${XXX}

Example

Request from the client:

POST /iclock/cdata?SN=0316144680030&table=options HTTP/1.1
Host: 58.250.50.81:8011

Content-Length: 26

User-Agent: iClock Proxy/1.09

Connection: close

Accept: */*

FingerFunOn=1,FaceFunOn=1
Response from the server:

HTTP/1.1 200 OK

Server: nginx/1.6.0

Date: Tue, 30 Jun 2015 01:24:26 GMT
Content-Type: text/plain
Content-Length: 2

Connection: close

Pragma: no-cache

Cache-Control: no-store

OK

Page |18

PUSH SDK Attendance PUSH Communication Protocol

Uploading Update Information

This function multiplexes the Download Command (#downloadcmd) request and adds parameters in its
URL to mainly upload the client's firmware version number, number of enrolled users, number of enrolled
fingerprints, number of attendance records, IP address of equipment, fingerprint algorithm version, face
algorithm version, number of faces required for face enroliment, number of enrolled faces, and marked
information about functions supported by the equipment.

A request message from the client:

Get /iclock/getrequest?SN=5%{SerialNumber}&INFO=${Value1},${Value2} ${Value3},${Value4},5{Value5},
${Value6},5{Value7},5{Value8},5{Value9},${Value10}
Host: ${ServerlP}: ${ServerPort}

Annotation:
HTTP request method: GET method
URI: /iclock/getrequest
HTTP protocol version: 1.1
Client configuration information:
SN: ${Required} Client's serial number
${Value1}: Firmware version number
${Value2}: Number of enrolled users
${Value3}: Number of enrolled fingerprints
${Value4}: Number of attendance records
${Value5}: IP address of Equipment
${Valueé6}: Version of fingerprint algorithm
${Value7}: Version of face algorithm
${Value8}: Number of faces required for face enrollment
${Value9}: Number of enrolled faces

${Value10}: Identifier of functions supported by the equipment in the format of 101 with every digit repr
esenting a function, 0—Not supporting this function, 1—Supporting this function.

Description of function on each digit
1 Fingerprint function
2 Face function
3 User photo function
4

Comparison photo function (comparison photo function is supported, th

Page |19

PUSH SDK Attendance PUSH Communication Protocol

e parameter BioPhotoFun needs to be set to 1)

5 Visible light face template function (face template function issupported,
the parameter BioDataFun needs to be set to 1)

(Push the first 3 digits by default, and push 5 digits when VisilightFun is set to 1)
Host header field: ${Required}
Other header fields: ${Optional}

For server responses, see Download Command.

Example

A request from the client:

GET /iclock/getrequest?SN=0316144680030&INFO=Ver%202.0.12-20150625,0,0,0,192.168.16.27,10,7,15,
0,111 HTTP/1.1

Host: 58.250.50.81: 8011

User-Agent: iClock Proxy/1.09

Connection: close

Accept: */*

A response from the server:

HTTP/1.1 200 OK

Server: nginx/1.6.0

Date: Tue, 30 Jun 2015 01: 24: 26 GMT
Content-Type: text/plain
Content-Length: 2

Connection: close

Pragma: no-cache

Cache-Control: no-store

OK

Page |20

PUSH SDK Attendance PUSH Communication Protocol

Heartbeat

Used to maintain a heartbeat with the server. When processing big data upload, use ping to keep the
heartbeat. When big data is processed, use getrequest to keep the heartbeat.

A request message from the client:
GET /iclock/ping?SN=5(SerialNumber) HTTP/1.1
Cookie: token=${XXX}
Host: ${ServerlP}:${ServerPort}

Content-Length: ${XXX}

A response from the server:

HTTP/1.1 200 OK

Server: Apache-Coyote/1.1
Content-Length: ${XXX}
Date: ${XXX}

OK

Annotation:

HTTP request method: POST method
URI: /iclock/ping

HTTP protocol version: 1.1

Example

A request from the client:

GET /iclock/ping?SN=3383154200002 HTTP/1.1
Cookie: token=cb386eb5f8219329db63356fb262ddff
Host: 192.168.213.17:8088

User-Agent: iClock Proxy/1.09

Connection: starting

Page |21

PUSH SDK Attendance PUSH Communication Protocol

Accept: application/push

Accept-Charset: UTF-8

Accept-Language: zh-CN

Content-Type: application/push;charset=UTF-8

Content-Language: zh-CN

A response from the server:
HTTP/1.1 200 OK

Server: Apache-Coyote/1.1
Content-Length: 2

Date: Tue, 10 Jan 2017 07:42:41 GMT

OK

Page |22

PUSH SDK Attendance PUSH Communication Protocol

Uploading Data

The data to be uploaded automatically can be set on the server. (For details, see the "TransFlag" parameter
in "Initialization Information Exchange".)

Uploading Mode
Realtime uploading
Interval uploading
Timed uploading
Real-time \ interval \ timed three upload modes, if support real-time, interval \ timed
mode does not work.

Realtime uploading: This is supported by the equipment by default and can be controlled by the server.
(For details, see the "Realtime" parameter in “Initializing Information Exchange”).

Interval uploading: The server can control specific interval time. (For details, see the "TransInterval"
parameter in “Initializing Information Exchange”.)

Timed uploading: The server can control specific upload timing. (For details, see the "TransTimes"
parameter in “Initializing Information Exchange".)

Uploading Attendance Record

A request message from the client:

POST /iclock/cdata?SN=${SerialNumber}&table=ATTLOG&Stamp=5{XXX} HTTP/1.1
Host: ${ServerlP}: ${ServerPort}
Content-Length: ${XXX}

${DataRecord}

Annotation:

HTTP request method: POST method
Used URI: /iclock/cdata

HTTP protocol version: 1.1

Client configuration information:

SN: ${Required} Serial number of the client table=ATTLOG: ${Required} Indicating that the uploaded d
ata is attendance records.

Stamp: ${Optional} Latest timestamp at which the attendance record is uploaded to the server. (For detai
Is, see the "Stamp" or "ATTLOGStamp" parameter in "Initializing Information Exchange".)

Page |23

PUSH SDK

Attendance PUSH Communication Protocol

Host header field: ${Required}

Content-Length header field: ${Required}
Other header fields: ${Optional}

Request entity: ${DataRecord}, attendance record data, in the following format:

S{Pin}S{HTIS{Time}S{HT}S{Status}S{HTIS{Verify}S{HTIS{Workcode}${HT}S{Reserved}$S{HT}S{Reserved}

Note:

${Time}: Verification time, in the format of XXXX-XX-XX XX: XX: XX. For example, 2015-07-29 11: 11: 11,

with ${LF} used to connect multiple records.

A normal response message from the server:

HTTP/1

.1200 OK

Content-Length: ${XXX}

OK: ${XXX}

Annotation:

HTTP status line: Defined with standard HTTP protocol

HTTP response header field:

Content-Length header field: According to the HTTP 1.1, this header field is generally used to specify the
data length of the response entity. If the response entity size is uncertain, head fields of Transfer-
Encoding: chunked, Content-Length and Transfer-Encoding are supported, all of which are standard

definitions of HTTP and are not described in details here.

Response entity: When the server normally receives data and successfully processes data, OK: ${XXX} is r
eplied. ${XXX} represents the number of records successfully processed. When an error occurs, the error
description is replied.

Example

A request from the client:

POST /iclock/cdata?SN=0316144680030&table=ATTLOG&Stamp=9999 HTTP/1.1

Host: 5

8.250.50.81: 8011

User-Agent: iClock Proxy/1.09
Connection: close

Accept

:*/*

Content-Length: 315

1452
1452
1452
1452
1452
1452

2015-07-30 15:16:28 0
2015-07-3015:16:290
2015-07-3015:16:300
2015-07-3015:16:310
2015-07-3015:16:33 0
2015-07-3015:16:34 0

Page |24

_ e e

O OO O OO0
O O OO OO0
O O OO OoOOo

PUSH SDK Attendance PUSH Communication Protocol

1452 2015-07-3015:16:350 1 0 0 O
8965 2015-07-3015:16:360 1 0 0 O
8965 2015-07-3015:16:370 1 0 0 O

A response from the server:

HTTP/1.1 200 OK

Server: nginx/1.6.0

Date: Thu, 30 Jul 2015 07: 25: 38 GMT
Content-Type: text/plain
Content-Length: 4

Connection: close

Pragma: no-cache

Cache-Control: no-store

OK:9

Uploading Attendance Photo

The configuration PushProtVer parameter sent by the server for initialization information exchange is

greater than or equal to version 2.2.14.

A request message from the client:

POST /iclock/cdata?SN=${SerialNumber}&table=ATTPHOTO&Stamp=5${XXX} HTTP/1.1
Host: ${ServerlP}: ${ServerPort}
Content-Length: ${XXX}

${DataRecord}

Annotation:

HTTP request method: POST method

URI: /iclock/fdata or /iclock/cdata

HTTP protocol version: 1.1

Client configuration information:

SN: ${Required} Serial number of the client table=ATTPHOTO: ${Required}

Stamp: ${Optional} Latest timestamp at which the attendance photo is uploaded to the server. (For detai
s, see the "ATTPHOTOStamp" parameter in "Initializing Information Exchange".) Host header field: ${Req
uired}

Content-Length header field: ${Required}

Other header fields: ${Optional}

Page |25

PUSH SDK Attendance PUSH Communication Protocol

Request entity: ${DataRecord}, attendance photo data, in the following format:

PIN=${XXX}${LF}SN=${SerialNumber}${LF}size=${XXX}${LF}CMD=uploadphoto${NUL}${BinaryData}
Note:

PIN=${XXX}: Filename of the attendance photo, with only the jpg format supported currently.
SN=${XXX}: Serial number of the client.

size=${XXX}: Original size of the attendance photo

${BinaryData}: Binary dataflow of the original photo.

Transmission of multiple records is not supported in attendance photos.

A normal response message from the server:

HTTP/1.1 200 OK
Content-Length: ${XXX}

Annotation:

HTTP status line: Defined with standard HTTP protocol
HTTP response header field:

Content-Length header field: According to the HTTP 1.1, this header field is usually used to specify the d
ata length of the response entity. If the response entity size is uncertain, head fields of Transfer-Encodin
g: chunked, Content-Length and Transfer-Encoding are supported, all of which are standard definitions
of HTTP and are not described in details here.

Response entity: When the server normally receives data and successfully processes data, OK is replied.
When an error occurs, the error description is replied.

Example:

A request from the client:

POST /iclock/cdata?SN=0316144680030&table=ATTPHOTO&Stamp=9999 HTTP/1.1
Host: 58.250.50.81: 8011

User-Agent: iClock Proxy/1.09

Connection: close

Accept: */*

Content-Length: 1684

PIN=20150731103012-123.jpg SN=0316144680030 size=9512 CMD=uploadphoto${NUL}${BinaryDat
a}

Page |26

PUSH SDK Attendance PUSH Communication Protocol

A response from the server:

HTTP/1.1 200 OK

Server: nginx/1.6.0

Date: Thu, 30 Jul 2015 07: 25: 38 GMT
Content-Type: text/plain
Content-Length: 2

Connection: close

Pragma: no-cache

Cache-Control: no-store

OK

Uploading Operation Record

The configuration PushProtVer parameter sent by the server for initialization information exchange is

greater than or equivalent to version 2.2.14.

A request message from the client:

POST /iclock/cdata?SN=${SerialNumber}&table=OPERLOG&Stamp=${XXX} HTTP/1.1
Host: ${ServerlP}: ${ServerPort}

Content-Length: ${XXX}

${DataRecord}

Annotation:

HTTP request method: POST method

URI: /iclock/cdata

HTTP protocol version: 1.1

Client configuration information:

SN: ${Required} Serial number of the client
table=OPERLOG: ${Required}

Stamp: ${Optional} Latest timestamp at which the attendance record is uploaded to the server. (For
details, see the "OPERLOGStamp" parameter in "Initializing Information Exchange".) Host header field:
${Required}

Content-Length header field: ${Required}

Other header fields: ${Optional}

Request entity: ${DataRecord}, operation record data, in the following format:

Page |27

PUSH SDK Attendance PUSH Communication Protocol

OPLOGS{SP}${OpType}S{HTIS{OpWho}${HT}IS{OpTime}${HT}S${Value 1}${HT}${Value2}${HT}S${Value3}${HT}
${Reserved}

${OpType}: Operation code. See Appendix 3.
${Value1}, ${Value2}, ${Value3}, ${Reserved}: Operand 1, 2, 3 and 4. See Appendix 4.
Note:

${LF} is used to connect multiple records.

A normal response message from the server:

HTTP/1.1 200 OK
Content-Length: ${XXX}

......

OK: ${XXX}

Annotation:
HTTP status line: Defined with standard HTTP protocol
HTTP response header field:

Content-Length header field: According to the HTTP 1.1, this header field is generally used to specify the
data length of the response entity. If the response entity size is uncertain, head fields of Transfer-Encodin
g: chunked, Content-Length and Transfer-Encoding are supported, all of which are standard definitions
of HTTP and are not described in details here. Response entity: When the server normally receives data a
nd successfully processes data, OK: ${XXX} is replied. ${XXX} represents the number of records successful
ly processed. When an error occurs, the error description is replied.

Example

A request from the client:

POST /iclock/cdata?SN=0316144680030&table=OPERLOG&Stamp=9999 HTTP/1.1
Host: 58.250.50.81: 8011

User-Agent: iClock Proxy/1.09

Connection: close

Accept: */*

Content-Length: 166

OPLOG 4 14 2015-07-3010:22:34 0 0 0 O
A response from the server:

HTTP/1.1 200 OK

Server: nginx/1.6.0

Date: Thu, 30 Jul 2015 07: 25: 38 GMT
Content-Type: text/plain
Content-Length: 3

Page |28

PUSH SDK Attendance PUSH Communication Protocol

Connection: close
Pragma: no-cache
Cache-Control: no-store

OK: 1

Uploading User Information

The configuration PushProtVer parameter sent by the server for initialization information exchange is
greater than or equals to version 2.2.14.

A request message from the client:

POST /iclock/cdata?SN=${SerialNumber}&table=OPERLOG&Stamp=S${XXX} HTTP/1.1
Host: ${ServerlP}: ${ServerPort}
Content-Length: ${XXX}

${DataRecord}

Annotation:

HTTP request method: POST method

URI: /iclock/cdata

HTTP protocol version: 1.1

Client configuration information:

SN: ${Required} Serial number of the client
table=OPERLOG: ${Required}

Stamp: ${Optional} Latest timestamp at which user information is uploaded to the server. (For details, se
e the "OPERLOGStamp" parameter in "Initializing Information Exchange".)

Host header field: ${Required}

Content-Length header field: ${Required}

Other header fields: ${Optional}

Request entity: ${DataRecord}, fingerprint template data, in the following format:

USERS{SP}PIN=${XXX}${HTIName=${XXX}${HT}Pri=${XXX}${HT}Passwd=S${XXX}${HT}Card=${XXX}${HT}Gr
p=S{XXX}IS{HTITZ=S${XXX}${HT}Verify=${XXX}${HT}ViceCard=${XXX}

Note:

Name=5${XXX}: User name. When the equipment is in Chinese, the GB2312 code is used. When the equip

Page |29

PUSH SDK Attendance PUSH Communication Protocol

ment is in another language, the UTF-8 code is used.
Card=${XXX}: User card number (main card), supporting only two formats.

a. hexadecimal data, in the format of [%02x%02x%02x%02x], representing the first, second, third and f
ourth digit from left to right. For example, if the card number is 123456789, this is Card=[15CD5B07]

b. string data. If the card number is 123456789, this is: Card=123456789

TZ=${XXX}: Information on number of the time period used by the user, in the format of XXXXXXXXXXXX
XXXX. Digits 1-4 describe whether the group time period is used, digits 5-8 description use personal time
period 1, digits 9-12 description use personal time period 2, and digits 13-16 description use personal ti

me period 3.

For example: 0000000000000000 represents use of the group time period.

0001000200000000 represents using personal time period, with personal time period 1 using the time in
formation of time period numbered 2.

0001000200010000 represents using personal time period, with personal time period 1 using the time in
formation of time period numbered 2 and personal time period 2 using the time information of time peri
od numbered 1.

Verify=${XXX} : User verification mode, does not contain the field, is null, or is set to -1(use group verificat
ion mode, if there is no access group, group verification mode is 0), otherwise see (appendix 7)

ViceCard=${XXX} : User card number (secondary card), string data. If the card number is 123456789, Vice
Card=123456789.

${LF}is used to connect multiple records.

A normal response message from the server:

HTTP/1.1 200 OK
Content-Length: ${XXX}

OK: ${XXX}

Annotation:

HTTP status line: Defined with standard HTTP protocol
HTTP response header field:

Content-Length header field: According to the HTTP 1.1, this header field is generally used to specify the
data length of the response entity. If the response entity size is uncertain, head fields of Transfer-Encodin
g: chunked, Content-Length and Transfer-Encoding are supported, all of which are standard definitions
of HTTP and are not described in details here.

Response entity: When the server normally receives data and successfully processes data, OK: ${XXX} is r

Page |30

PUSH SDK Attendance PUSH Communication Protocol

eplied. ${XXX} represents the number of records successfully processed. In case of an error, an error desc
ription is replied.

Example

POST /iclock/cdata?SN=0316144680030&table=OPERLOG&Stamp=9999 HTTP/1.1
Host: 58.250.50.81: 8011

User-Agent: iClock Proxy/1.09

Connection: close

Accept: */*

Content-Length: 166

USER PIN=36234 Name=36234 Pri=0 Passwd= Card=133440 Grp=1 TZ=0001000000000000
USER PIN=36235 Name=36235 Pri=0 Passwd= Card=133441 Grp=1 TZ=0001000000000000

A response from the server:

HTTP/1.1 200 OK

Server: nginx/1.6.0

Date: Thu, 30 Jul 2015 07: 25: 38 GMT
Content-Type: text/plain
Content-Length: 4

Connection: close

Pragma: no-cache

Cache-Control: no-store

OK: 2

Uploading Identity Card Information

The configuration PushProtVer parameter sent by the server for initialization information exchange is
greater than or equals to version 2.3.0.

A request message from the client:

POST /iclock/cdata?SN=${SerialNumber}&table=IDCARD&Stamp=5{XXX} HTTP/1.1
Host: ${ServerlP}: ${ServerPort}
Content-Length: ${XXX}

${DataRecord}

Annotation:

HTTP request method: POST method

URI: /iclock/cdata

Page |31

PUSH SDK Attendance PUSH Communication Protocol

HTTP protocol version: 1.1

Client configuration information:

SN: ${Required} Serial number of the client
table=IDCARD: ${Required}

Stamp: ${Optional} Latest timestamp at which the identity card information is uploaded to the server. (n
ot used)

Host header field: ${Required}

Content-Length header field: ${Required}

Other header fields: ${Optional}

Request entity: ${DataRecord}, user information data, in the following format:

IDCARDS{SPIPIN=S${XXX}S{HTISNNum=S${XXX}S{HTHDNum=${XXX}${HTIDNNum=S${XXX}${HT}Name=3${X
XX}I${HTIGender=${XXX}${HT}Nation=${XXX}${HT}Birthday=${XXX}${HT}Validinfo=${XXX}${HT}Address=
SIXXX}${HT}Additionallnfo=${XXX}${HT}ssuer=${XXX}${HT}Photo=${XXX}${HT}FPTemplate 1=${XXX}${H
TIFPTemplate2=5${XXX}${HT}Reserve=S${XXX}${HT}Notice=${XXX}

Note:

PIN=${XXX} : User ID. If the user's information is not bound to the identity card, then the value of PIN is 0.
SNNum=${XXX} : Physical card number of identity card

IDNum=${XXX} : Citizen id number

DNNum=${XXX} : Identity card serial number (card body management number)
Name=5${XXX} : Id Name, using utf-8 encoding

Gender=${XXX} : Gender code

1," male"

2," female"

Nation=${XXX}: Ethnic code

0,"Decoding error”

1,” Han”

2,” Mongol”

3,"Hui”

4," Tibetan”

5,” Uighur”

6,"Miao”

Page |32

PUSH SDK

Attendance PUSH Communication Protocol

7,"Yi"
8,"Zhuang”
9,"Buyi”
10,"Korean”
11,"Manchu”
12,"Dong”
13,"Yao”
14,"Bai”
15,"Tujia”
16,"Hani”
17,"Kazakh”
18,"Dai”
19,"Li"
20,"Lisu”
21,"Wa"
22,"She”
23,"Gaoshan”
24,"Lahu”
25,"Shui”
26,"Dongxiang”
27,"Naxi”
28,"Jingpo”
29,"Kirghiz”
30,"Du”
31,"Daur”
32,"Mulam”
33,"Qiang”
34,"Blang”
35,"Salar”

36,"Maonan”

Page |33

PUSH SDK

Attendance PUSH Communication Protocol

37,"Gelao”
38,"Xibe"”
39,”Achang”
40,"Pumi”
41,"Tajik”
42,"Nu”
43,"Uzbek”
44,"Russian”
45,"Evenki”
46,"De’'ang”
47,"Bonan”
48,"Yugur”
49,"Gin”
50,"Tatar”
51,"Drung”
52,"0Oroqin”
53,”Hezhen”
54,"Menba”
55,"Lhoba”

56,"Jino”

57,"Coding error”

97,"Other”

98,” Foreign origin”

Birthday=${XXX} : Date of birth (format: yyyyMMdd)

ValidIinfo=${XXX} : Period of validity, start date and end date (format: yyyyMMddyyyyMMdd)

Address=${XXX}: Address, encoded in UTF-8

Additionallnfo=${XXX}: Machine read appends address, encoded in UTF-8

Issuer = ${XXX}: Issuing authority, use UTF-8 encoding.

Photo=${XXX} : Photo data stored by identity card, which is encrypted and converted into base64 data c

ontent for transmission.

Page |34

PUSH SDK Attendance PUSH Communication Protocol

FPTemplate1=${XXX} : Fingerprint 1_ fingerprint characteristic data, and converted into base64 data con
tent for transmission.

FPTemplate2=${XXX} : Fingerprint 2_ fingerprint characteristic data, and converted into base64 data con
tent for transmission.

Reserve=${XXX}: Reserve field
Notice=${XXX} : Note information, encoded in UTF-8.

${LF}is used to connect multiple records.

A normal response message from the server:

HTTP/1.1 200 OK
Content-Length: ${XXX}

OK: ${XXX}

Annotation:

HTTP status line: Defined with standard HTTP protocol
HTTP response header field:

Content-Length header field: Based on HTTP 1.1, this header field is usually used to specify the data leng
th of the response entity. If the response entity size is uncertain, head fields of Transfer-Encoding: chunk
ed, Content-Length and Transfer-Encoding are supported, all of which are standard definitions of HTTP a
nd are not described in details here.

Response entity: When the server normally receives data and successfully processes data, OK: ${XXX} is r
eplied. ${XXX} represents the number of records successfully processed. In case of an error, an error desc
ription is replied.

Example

A request from the client:

POST /iclock/cdata?SN=0316144680030&table=IDCARD&Stamp=9999 HTTP/1.1
Host: 58.250.50.81:8011

User-Agent: iClock Proxy/1.09

Connection: close

Accept: */*

Content-Length: 658

IDCARD PIN=2 SNNum=xxxxxxxx460088xxxxxx IDNum=xxxxxx19911218xxxx DNNum= Name=Zh
ang San Gender=1 Nation=1 Birthday=19911218 Validinfo=2017091520270915 Address= Provin
ce xx City xx County xxx Village xxx Group xx Additionallnfo= Issuer= County xxx public securit
y bureau Photo=VOXxmAH4AMgAA/4UYUV+sjnpymK1Boqvz3UCBevbbHNYikGyH1XA7Emt2agFOHF
hDc4Bxzeg/jHOYp8NgI1861Y812K1AOUIRgy1Z5TEUSG1GV4AMWIAB3qYOtKqWNPzyEd8PnOEhRsgAAje WP

Page |35

PUSH SDK Attendance PUSH Communication Protocol

xiUzLaPU1w FPTemplate1=QwGIEGELUQAAAAAAAAAAAAACIAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAA
AAAAAAAA4 FPTemplate2=QwGIEGEQUAA
AAADS Reserve= Notice=

A response from the server:

HTTP/1.1 200 OK

Server: nginx/1.6.0

Date: Thu, 30 Jul 2015 07: 25: 38 GMT
Content-Type: text/plain
Content-Length: 4

Connection: close

Pragma: no-cache

Cache-Control: no-store

OK: 1

Uploading Identity Card Attendance Record

The configuration PushProtVer parameter sent by the server for initialization information exchange is
greater than or equal to version 2.4.0.

A request message from the client:

POST /iclock/cdata?SN=${SerialNumber}&table=ATTLOG&Stamp=5{XXX} HTTP/1.1
Host: ${ServerlP}.${ServerPort}

Content-Length: ${XXX}

${DataRecord}

Annotation:

HTTP request method: POST method

URI: /iclock/cdata

HTTP protocol version: 1.1

Client configuration information:

SN: ${Required} Serial number of the client

table= ATTLOG: ${Required} The uploaded data is the attendance record of identity card.

Stamp: ${Optional} Latest timestamp at which the identity card attendance record is uploaded to the ser

Page |36

PUSH SDK

Attendance PUSH Communication Protocol

ver. (For details, see the “Stamp” or "ATTLOGStamp" parameter in "Initializing Information Exchange".)

Host header field: ${Required}

Content-Length header field: ${Required}

Other header fields: ${Optional}

Request entity: ${DataRecord}, upload identity card attendance record, in the following format

S{Pin}S{HTIS{Time}S{HT}S{Status}S{HTIS{Verify}S{HT}IS{Workcode}${HT}S{Reserved 1}${HT}${Reserved2}

S{HT}IS{IDNum}S${HT}${Type}

IDNum: Id number

Type: Record Type (0 means attendance, 1 means verification)

The Type value is 0, and the content of the attendance record is defined in accordance with the attendan
ce agreement.

The Type value is 1, STATUS: O - success, 1 - failure, 2 — blacklist

VERIFY :1- face, 2- face + fingerprint, 3- fingerprint + face

Other content is defined in accordance with standard protocols.

Example

A request from the client:

POST /iclock/cdata?SN=0316144680030&table=ATTLOG&Stamp=9999 HTTP/1.1
Host: 58.250.50.81:8011
User-Agent: iClock Proxy/1.09
Connection: close
Accept: */*
Content-Length: 315

1452
1452
1452
1452
1452
1452
1452
8965
8965

A response from the server:

2015-07-30 15:16:28
2015-07-30 15:16:29
2015-07-30 15:16:30
2015-07-30 15:16:31
2015-07-30 15:16:33
2015-07-30 15:16:34
2015-07-30 15:16:35
2015-07-30 15:16:36
2015-07-30 15:16:37

HTTP/1.1 200 OK

Server:

Date: Thu, 30 Jul 2015 07: 25:

nginx/1.6.0

Content-Type: text/plain
Content-Length: 4
Connection: close

Page |37

O OO OO0 OOoOOo
— — — — — —))
O O OO OO O OO0

38 GMT

OO OO OO0 OO0

O OO OO OCO OO

210218199105072345
210218199103062104
210218199411212642
210218199207123075
210218199512012332
210218199011304365
210218199806068325
210218199310094316
210218199708167443

O OO OO0 O OO

PUSH SDK Attendance PUSH Communication Protocol

Pragma: no-cache
Cache-Control: no-store

OK: 9

Uploading Identity Card Attendance Photo

The configuration PushProtVer parameter sent by the server for initialization information exchange is
greater than or equal to version 2.4.0.

A request message from the client:
POST /iclock/cdata?SN=${SerialNumber}&table=ATTPHOTO&Stamp=${XXX} HTTP/1.1
Host: ${ServerlP}:${ServerPort}

Content-Length: ${XXX}

${DataRecord}

Annotation:

HTTP request method: POST method

URI: /iclock/fdata or /iclock/cdata

HTTP protocol version: 1.1

Client configuration information:

SN: ${Required} Serial number of the client
table= ATTPHOTO: ${Required}

Stamp: ${Optional} Latest timestamp at which the identity card attendance photo is uploaded to the ser
ver. (For details, see the "ATTPHOTOStamp" parameter in "Initializing Information Exchange".)

Host header field: ${Required}

Content-Length header field: ${Required}

Other header fields: ${Optional}

Request entity: ${DataRecord}, upload identity card attendance photo, in the following format:
PIN=${XXX}${LF}SN=${SerialNumber}${LF}size=${XXX}${LF}CMD=uploadphoto${NUL}${BinaryData}

Note:

Page |38

PUSH SDK Attendance PUSH Communication Protocol

PIN= time - photo type — User ID - id number.jpg
Photo type:

0: attendance successful photo

1: attendance failed photo

2: blacklist photo

3: verification successful photo

4. verification failed photo

SN=${XXX} : Cient series number

Size =${XXX} : Original size of attendance photo

${BinaryData} : Original image BinaryData stream

Example
A request from the client:

POST /iclock/cdata?SN=0316144680030&table=ATTPHOTO&Stamp=9999 HTTP/1.1
Host: 58.250.50.81:8011

User-Agent: iClock Proxy/1.09

Connection: close

Accept: */*

Content-Length: 1684

PIN=20160615093758-0-1457-210218199011304365.jpg SN=0316144680030 size=9512 CMD=uplo
adphoto${NUL}${BinaryData}

A response from the server:

HTTP/1.1 200 OK

Server: nginx/1.6.0

Date: Thu, 30 Jul 2015 07: 25: 38 GMT
Content-Type: text/plain
Content-Length: 4

Connection: close

Pragma: no-cache

Cache-Control: no-store

OK:9

Page |39

PUSH SDK Attendance PUSH Communication Protocol

Uploading Fingerprint Template

The configuration PushProtVer parameter sent by the server for initialization information exchange is
greater than or equal to version 2.2.14.

A request message from the client:

POST /iclock/cdata?SN=${SerialNumber}&table=OPERLOG&Stamp=${XXX} HTTP/1.1
Host: ${ServerlP}: ${ServerPort}
Content-Length: ${XXX}

${DataRecord}

Annotation:

HTTP request method: POST method

URI: /iclock/cdata

HTTP protocol version: 1.1

Client configuration information:

SN: ${Required} Serial number of the client
table=OPERLOG: ${Required}

Stamp: ${Optional} Latest timestamp at which the fingerprint template is uploaded to the server. (For de
tails, see the "OPERLOGStamp" parameter in "Initializing Information Exchange".)

Host header field: ${Required}

Content-Length header field: ${Required}

Other header fields: ${Optional}

Request entity: ${DataRecord}, fingerprint template data, in the following format:
FPS{SPIPIN=S{XXX}S{HTIFID=${XXX}${HT}Size=S{XXX}S{HT}Valid=S${XXX}S{HTITMP=${XXX}
Note:

Size=${XXX}: Length after base64 coding of the fingerprint template

TMP=${XXX}: When the fingerprint template is transmitted, base64 coding needs to be conducted for th
e original binary fingerprint template.

${LF} is used to connect multiple records.

Page |40

PUSH SDK Attendance PUSH Communication Protocol

A normal response message from the server:

HTTP/1.1 200 OK
Content-Length: ${XXX}

......

OK: ${XXX}

Annotation:

HTTP status line: Defined with standard HTTP protocol
HTTP response header field:

Content-Length header field: Based on HTTP 1.1, this header field is usually used to specify the data leng
th of the response entity. If the response entity size is uncertain, head fields of Transfer-Encoding: chunk
ed, Content-Length and Transfer-Encoding are supported, all of which are standard definitions of HTTP a
nd are not described in details here.

Response entity: When the server normally receives data and successfully processes data, OK: ${XXX} is r
eplied. ${XXX} represents the number of records successfully processed. In case of an error, an error desc
ription is replied.

Example

A request from the client:

POST /iclock/cdata?SN=0316144680030&table=OPERLOG&Stamp=9999 HTTP/1.1
Host: 58.250.50.81: 8011

User-Agent: iClock Proxy/1.09

Connection: close

Accept: */*

Content-Length: 4950

FPPIN=2 FID=0 Size=1124 Valid=1 TMP=SghTUzIxAAADSOOECAUHCc7QAAANSNkBAAAAg/YUfEsyAl
EPHgH6ALFHRQBBAPkKP8wWBAS2UPEWBTACYPeOtYAHkIJACuAHdIeQBtAGWEUAB1S20DhAB+AKS8EXUUP
AOoPJABWANVENQDCANsPZQDbSx8PbwDeACwPz0vjAJ8PdwArAPFELAD5SAMwPVQASSYMKMgAwAQk
PSUE2DkcXQOuCQ1B4AJT7GZuC3GyNySrvjoKT7X77SkYkBOL6MQhMCV5GT1PUR+TOFfPIGTQMABQHp+X
gBhclzg397xf0iD5CkQAXVErv3q4PQZ940xfmXzBb5bcher2e7PQkLAXyf8gJ78nP7iwFIQmrXcwKn31Lfiwo
BIDQBAjrbrAdLOBFwwv8ExVYStv7ABQBOE7+JCEt/GIBs/4SqDwPoJ4yHwMDEBcHDIicB/DQCrLkbAwgnFc
NWGAHN2g4ilCQCsNoPCnm4RS75CjJOrgwFqwS4HADFDZmwEAwWJCRjrABwATWTCtMX+whMAw4+JwY
nC+//Aw3pCwsKOwWRIAXFKIB8PAsfzCw3WLwaENAz9besHBi4eqBwOPW4PBwsEoygBxKnvCwcLAwgx4W
FIBO2WGwI86boCLw4b/ZMFx3ADXJAFSi3X/wqat2whjD/wkAc261eMKKigQBG249IwUDONP9QXEAdbZww
Yt5wcHCwME6wcMuBQCeeANI1gCQMW;|C/v+DwL90UbQCAIF7cMLNAJo2CMHA+/xTzQCCy2jA/pPABM
XTh2ZXEQEfnkCn/80LwWVdSQMB18tDiwsBF8s9RZFcFUvqza3C/3gAwMOMw 11xZ8laxeXM7cFyxMDCpL
vAdCDD/n4HAKMcHsMH/gsAcNreO/z/tfxC/wsAdBvk/bf9/T5KFAAMAKfPXxMHFjP/CB8DDi8FzCgBs4p+Ew
hHBGwDr4qQEUcA2wsPBwMF4B8DCEML+wAQAei/wH1wB6/Gma8AFxI2lwIPAg1gYxej46Ut8n8PBwqrB
bgYJEHsO4vk8/cMkBRCIF1NpxhCGe0jBERDTMGxri4/CrGb/FBAaMqiLccDAWMTFAMLAI8PB/8HAA9WLO
gj/DxDPPqtA/8GJtcRCDBDE}j55Bi/7JyZMEEdAFRQ7T4

FP PIN=2 FID=1 Size=2120 Valid=1 TMP=T3dTUzIxAAAGNDsSECAUHCc7QAAAeNWKBAAAAhtIDsjQjA

Page |41

PUSH SDK Attendance PUSH Communication Protocol

KIPYgDiAHo7NgA1AHAPZgBSNKQPdwBWAOAPVjRYABMPsACIADM76wB8ALkO2QB4NFgPVQCCAP0O2
TSTALoOYABeAEo7TgCdAFMPwQGMNNgNwgCiAHOPNnDSpAEQPCgFUuAEI5eQCtAECPIwCpNMoNEgGwA
PKNvTSyADoP+ABXAEY/KgC1TANUPVQC/NMMP7gC8AAWNHTTAAMOO9AAEAEC5JgDCANQO7QDKNN40O
zgDOAH40OH;TQANUODgAdAMc6ZgDgAEsPNgDmMNMMOKQDIAKMOETIAOUOzgAhAM86QQDMAGUP
RQDoNFIPaQDwAAIP6DT3AD8OBgEzALk6UAD3AMQOCAAHNTQOPWAHAAEPDTUGAUIOtQDMAUY70Q
AMAUSPEAAJNbQO8gAZAXgPxDQfATsOCgHaAcQ63AAPATYOZAAGNTOMmMAAVAYOM/TQUACANYQD1
AcY60gA2AT80aAA/NcELOgA7ASYPIDQ8AWQLIJQCEAfQ7hQBEAd8OKWBCNb8ORABMAS0oPdDROAeUO
NACUACco5Lv0jbON/vw8xbVZpOI8G9+JPA0Zbg6sF2hafgw2db/Kg3hanMJLdJ1p/HQLU48rxWblqlj8LeeSU
5wASmMAL+8DIEdPjjlTMEKQjTH10D0gPInf2aGYFzANzaklW6/UoNkQruWegFTYfW/PMF5zDAjd203PosZb
VLGIVugNb5YXuLNMx1+QARCTT6k7VQf7qL1IpZi2c0ufvo9+NHWGXoLNOR66PcwC7wAWjsUDDOUBfarglL
TBFRd1CKH4be/q65T3cYRJ+3fqD7LgB4KAMYECiic2SSAIEZmBvVBIfM/iXpQJeAHuUJr7rACO4HdXxwdkBTDH
5BglrOMH1THtMT/BYXRkmT/c7TgcsH23gAPAw209IWBgqgaEzH27xWgGLRFyFNOMc7QwfgGD9f4l/i+/dHO
pivH+2AaHtkgGpfi9efR7vsJofaXaLASM5Eu+0AJxBhkGHYN3sbSN2IMdCCwHZ7FUej1fyfXU8mW17ByJhE
maQBKYMGKTkXwN/XAXnzZXgG6IPQ3n/JEAhAmKgZ4bpGpP24wPjfRRa9Hpz8AEIEWBAUNngoQUOZWUA
wAwAaAcidMBEwDgKAHOIIctEQv4SAHzOEzPO/ONAWS8LIxgCfPx3/CgDDC+L/U8tKDQBnDAk4RvgMw/3A
FgCNyRcwH1VYVDyfB8XQChnBVf8SADfU/cbK/v7/08H8BcL4y0gDAOQKLToLBgMb/TwwQQnFuCAZS1X
+CwAmM4vdKyf/AKwUAX+2AdiEBUS4A/yeD/VdyZWADADMztMAeNFc1APWwMDVA+WdZW//AxQTFND9
ZZAgApVcwOIXG9AYAelgg/ur/EzZRUWRD+/v3TwDEHTcE4GgADmM+IVOPZOWPOWKTpDxnhoEAAHaOL90O/
vK/v7+/jQHXAVUZ5X9wgUAsawOTCYBCHLKR/4FISx1Oh8AAX7wBkcozy8wRTbC/j7CQBgCARCAVsHBABY
0X40EAOUAg3YANEWDaZ3CCMVYjwP6RjYEAD5KXI4wAUSPVIYFxUqJePxPHQAEKRL++GP8+/4j/v+0/8fK
/cFW/ykOxd+QDv5Xc8DCwJULBmMufSTj//cDqBQZ/nINBBWBQZEz4y/8yBADDpvHA+CQBI6tDUIE+wWccHW
fsUAJyrhvVdyv3E///9/wX7+2MCAQevRsHDAQqbQf9SBgB4dUZD9AsAv7U3QQXAXUQEALG2QGjdAB+Jx/
7///7+0vz4HcH+/8H9/WX++TcBCLO9AWQXF7cZ0/sLBCAD9AKD79Xb/IAACygUoxsvB/f/9+/04/fjK/v3AwP//
Bf3E9MH9/v3+HcUPOPfD/MD+//86/fvP/SErS//AOz74MAAS3EI9BMUI510xBgD/40AH/Hk/AWfmUP5VhCIA
NN3nQMDBV8AAOt5j/0AKAIAOUEVO/POGAOV6g8RAMREICMLAIBEQtDhCcwkQuAzyQPvJ+/8FEJwWPIf5w
MxHWEzfowgT/wjcQFRhQwQbV0xxyY/ODEMMihcEFJNwvNMEDEBY5RVUEEJVBVVMTBRY5Tf1RChBCpw
DGOMHAWMBKAA==

FPPIN=3 FID=0 Size=1592 Valid=1 TMP=TetTUzIXAAAEQKSECAUHCc7QAAAcqWkBAAAAhFUooagrA
KAPQADpAGKnzgAuAKKkPtQA1qlsPnQBGAOOPTghKAGIPIgCrADanNwBYAEIPngB6qDQOfgCLAGENJKIN
ADOPiABTAKimdACXABOOVgCmqKwOigCnAFgOtqiOAKsPiAByAJimyQC3AKsPjQDEqKwPngDBAFIPrqjD
AKIPaQAPABGNnrwDQAIWPAQDQqJsP6wDUAF4PXKjgAJ8PwgAhAIOmM2QDrAIwPTgDrqJIPQWD8AFYPdq;j
/AJQP9gDBAYmMnugAGAXwPrwANgZMP6QAJAUYOWagTAYsP+AD2AWgmVAAOAXB8PUQA8qYAP6ABD
AbIPKdPNn+18ZTgTm3GePXwtHgjd7mih7jAplJYui+i6h1IRzZIwfYrpLTDpojnwVODLjgxleOdv2Afg5iMsiJIU
6C2uTeQgwABW4PHhhcX2DhRNxqCgSOPMpAGTwKaDYAKEWqQB88vGuWAIdEOolJ5kGuRof7PcJDhDuZ
KcUGLX4xXs/aVLRqOyV9v326BRpugqzzQhBmApMXuSc/DZL1wezA/p1XgAbS8JrOnANWQq9IICgnK9TsCQa
xMC9kDZQxXAjelz/Xm8gv4DABRoH8C8fig+fcX2VDY+5L5dfoD79d1z/XX7LfvZvOHr94H6QrL9xbvuTys+2
sgRAHHpPSVRDQCpBCtrImTEpgGQBxw4/55qYKOBcQgP/zHBAIWQESCcTAFOJxvz7V/5HWP5rZ5QMBDYIHV5
KwGKRBAQSCydZBQDDzifE7wUAtQONnYNMAQLgBwP3+QV6hUI30CgAlJ+D80/3EVfAwFwWAQKiL9+V/MT
hTZcAEwY+gAWwsj5LDQAYEISxndMINAGOtI/1j/8L/XQzFbDYhwJ9pwnsFxdI2j1MJAHQzHoNU+64BRkpr
wsS2DwTmS/38//wwkMPGxgwAnEorwjv/YGjAwWYQOAEmMKZ8ckksLBwsDAzwCxwsSj/wVjCcdQAUBVWxXM
PCwclHw/tqwMDC/UsMxTlqfif9/MD9/qoMBPRuT8LDxMBYwWiuAZdwMFLAwwBI3UHDw8DDB8Uzcu6R
wsIGADmMzQ8UgCQBIleCfDIWEfqA6Fyf////T++VX+/f7/wP4F/8RowltvBgBaQDTGIAwAe4ipwjvizZW2hfhUAF
08DQfpX//39/57/7nwlqByPQ8LCiAV+xKABI489jMK2BAQdkDSDFQCIV6v7IMfHW8TCwgb/xtTAhQUAdZv
nw/poCgAVoD2SuWQDqgLe5IHSFCsURv5jCacHB/sPGAKZrFsAGAEzE4cF+rwFsyRPAhjsGBKbLKcLAIAnFa8
g2wv/CwTMGxcjSv8HCRgOAWYEXftZHSQQA303KWQ20jvADaEf/xgBDVRLABRANAMXHArh3AAIHWATVV
wKoQAUQKQgTAPzGrhFuCQZpwMgQ/7qHdsDCQ/4FWRWA4LhYJwf/COsJUaMNDQBAQOuUYJdFfAZmb+Y
AjV/C7YM2QJEQMtk/77V//UgUQWFHIUKcRITdwLcCeUm2vEZA7fVIdyRDg7nvA/2jC/gY/Drg7XAPAbcl7
/cb6QWALQWAADKCcPCQ==

A response from the server:

HTTP/1.1 200 OK

Page |42

PUSH SDK Attendance PUSH Communication Protocol

Server: nginx/1.6.0

Date: Thu, 30 Jul 2015 07: 25: 38 GMT
Content-Type: text/plain
Content-Length: 4

Connection: close

Pragma: no-cache

Cache-Control: no-store

OK:3

Uploading Face Template

The configuration PushProtVer parameter sent by the server for initialization information exchange is
larger than or equal to version 2.2.14.

A request message from the client:

POST /iclock/cdata?SN=${SerialNumber}&table=OPERLOG&Stamp=5${XXX} HTTP/1.1
Host: ${ServerlP}: ${ServerPort}
Content-Length: ${XXX}

${DataRecord}

Annotation:

HTTP request method: POST method

URI: /iclock/cdata

HTTP protocol version: 1.1

Client configuration information:

SN: ${Required} Serial number of the client
table=OPERLOG: ${Required}

Stamp: ${Optional} Latest timestamp at which the face template is uploaded to the server. (For details, se
e the "OPERLOGStamp" parameter in "Initializing Information Exchange".)

Host header field: ${Required}

Content-Length header field: ${Required}

Other header fields: ${Optional}

Request entity: ${DataRecord}, face template data, in the following format:
FACES{SPIPIN=S${XXX}${HTIFID=S{XXX}S{HT}ISIZE=S{XXX}S{HTIVALID=S${XXX}${HTITMP=${XXX}

Note:

Page |43

PUSH SDK Attendance PUSH Communication Protocol

SIZE=${XXX}: Length after base64 coding of the face template

TMP=${XXX}: When the face template is transmitted, sixteen bytes (of random content) need to be adde
d as the prefix of the original binary face template before base64 coding is conducted.

${LF}is used to connect multiple records.

A normal response message from the server:

HTTP/1.1 200 OK
Content-Length: ${XXX}

OK: ${XXX}

Annotation:
HTTP status line: Defined with standard HTTP protocol

HTTP response header field:

Content-Length header field: Based to the HTTP 1.1, this header field is generally used to specify the data
length of the response entity. If the response entity size is uncertain, head fields of Transfer-Encoding: ¢

hunked, Content-Length and Transfer-Encoding are supported, all of which are standard definitions of H
TTP and are not described in details here.

Response entity: When the server normally receives data and successfully processes data, OK is sent: ${X
XX} is replied. ${XXX} represents the number of records successfully processed. When an error occurs, the
error description is replied.

Example:

A request from the client:

POST /iclock/cdata?SN=0316144680030&table=OPERLOG&Stamp=9999 HTTP/1.1
Host: 58.250.50.81: 8011

User-Agent: iClock Proxy/1.09

Connection: close

Accept: */*

Content-Length: 1684

FACE PIN=306 FID=2 SIZE=1648 VALID=1 TMP=AAAAAAAAAAAAAAAAAAAAAFPLRmMIYATFLFLToAU
QBQ1Mg+fgXuia23BDrNtwSfgJ8g74H3YHmMXIkFpgetB5eH5yXuBvMLoa6wSx9HNgK7RP80v1i+LLY8nCn
7PXmD7w15Bp8N1wm/A78PowejZx9jlyWnBZ88K5wVfDDcNTjifGlvox9iD8sf1g37B70Fk4WRI5RrKq8uD2
MngRexMxk5cbDiH+c3xj+CV8Zf1idaDfWbkB8Rnwt/AV8DuU0SvAddBywHMQIMVysfFKNENfZDOFJ9jrnGe
BD5Kcwp7CVySflzOE+wZxjWFVY6fgreXHBd6B4ov4BXBX+GulZ4pazBTINiG8kf4h/DHxGaFxYe+yh+01sIC
DsPcweuB/SHNA+UngwG3AvnA88DZg/vhmaaV4dsWzwerBn1jLcN8wu/ErlTiR+YHVsc1wy2wdaC5uEmxK
bwZ+AGeB5fFt6WLVa8kq/gvqqv8LvwsBAACAgIHAQABAAEGAUxyAQkclP9SAAohGhchAQAAEAEAAQYF
ASBPAQYGB1YKAQEMBgAACg8HFQODDAOEAg8CCBQDAXxtLDWM40CUFEBNVSQYDDRNJJg8CAACJFBM
MAQQiYABMAwhZHAcEehMCACYEAAWACQsJBQAFBAYXxAAknpwQGJ6EIBAUPIXwFBwQPOgQCBAARGzZ
8WCAIAGUQWBggLhyMIBJQIBAIIAQUEAgMPAWUACQAFUAABE/8EBWkQEgABCRECBWQFFEYNCACCFiJ3

Page |44

PUSH SDK Attendance PUSH Communication Protocol

YWUACTpKLgwBDNn8yDApjFAIBEWAAAWACBGEAAAECAUMBAWBCAAACAQIBAAEABAMBAQUEAQMCBR
0x/zACAhUhSK8GAACIDhUBNgsLDQMBAQAAAAYDAAAAAAEEAQAHBWEGQWEIAAJe/zQBAAYY/30GAA
ABAAICAGAABAMAAAEFFAGAAAOEAAEUAGABAQEABWEECQMWGAIBDSIHASH/HQQICIQeBgYMCgslAw
EBDSBOIBEJAjLbQgKIB245BQYKCAAEAAEDAWEDDGCKAQIBAhwABB+4DAQOOIAFCAGXFWMBBYNDCQYB
ABUQGSYDAwWItYhMIATGOKQwWLV0oCBBKEAQgBDggHAQADBWIDAXASEAIGFXYXBgMiRXQNCgMXvCMO
BQIXGrxABgkGJQ4YBQEQHXUJBUgNCgggAwIBAGMKAAAAAGMCIWADAZUAAAEAAWAAABABAAEAAAA
AAAAAAT1j/JgQGAXf/FAMBAGKLAAEEAGIAAAAEAAEAAWEAAAABAAQAAAAAAAABAAAAARGQAQABA]P/
KQMAAAIDAQEBBAIEBAOCAAOUAGMBRAYCACOBAQAAAASDAGAAAGEJAAMDHGABEIWNAQQNRASDAW
¢5IDICAQAIETAbAAEGMO0eAQAPYCIKA/81CwU5DAIGAAEEBQQABQACKAAGG2MEAXKpFQMBCTKKAAU
CFSYJAQABDBYEGWIBAjUIQUDO/8eCwSMRAQACAQABQEABJAAAAMAAABAAAMUAAAAAWGCBQMFC
QcCBBNECGMAAAQVZhABAAZ/DIBACL/XQgDJIEHAGQWFAQEAAACDAAAAAQEDAAACAAAAAWEAAGEF
CQEBBAEHIAIAAQELFRQEAWICS/8rBQEDRVQUBAYODWQAAAGAAAANAAAAAAAA

A response from the server:

HTTP/1.1 200 OK

Server: nginx/1.6.0

Date: Thu, 30 Jul 2015 07: 25: 38 GMT
Content-Type: text/plain
Content-Length: 4

Connection: close

Pragma: no-cache

Cache-Control: no-store

OK: 1

Uploading Finger Vein Template

The configuration PushProtVer parameter sent by the server for initialization information exchange is
larger than or equal to version 2.2.14.

A request message from the client:

POST /iclock/cdata?SN=${SerialNumber}&table=OPERLOG&Stamp=5${XXX} HTTP/1.1
Host: ${ServerlP}: ${ServerPort}
Content-Length: ${XXX}

${DataRecord}

Annotation:

HTTP request method: POST method
URI: /iclock/cdata

HTTP protocol version: 1.1

Page |45

PUSH SDK Attendance PUSH Communication Protocol

Client configuration information:
SN: ${Required} Serial number of the client
table=OPERLOG: ${Required}

Stamp: ${Optional} Latest timestamp at which the face template is uploaded to the server. (For details, se
e the "OPERLOGStamp" parameter in "Initializing Information Exchange".)

Host header field: ${Required}

Content-Length header field: ${Required}

Other header fields: ${Optional}

Request entity: ${DataRecord}, face template data, in the following format:

FVEINS{SPIPin=${XXX}${HTIFID=S${XXX}${HT}Index=5${XXX}${HT}Size=S{XXX}${HT}Valid=${XXX}${HT}Tmp
=5${XXX}

Note:
Pin=${XXX}: User ID
FID=${XXX} : Finger number, (0~9)

Index=${XXX} : One finger has multiple finger vein templates, and Index is the number of finger vein tem
plate (0~2).

SIZE=${XXX}: Length after base64 coding of the finger vein template binary data
Valid=${XXX} : Valid identification of the finger vein template, the values are as follows:
Value Description

0 invalid template

1 normal template

Tmp=${XXX}: Base64 encoding of the original binary finger vein template is needed when transferring th
e finger vein template.

${LF} is used to connect multiple records.

A normal response message from the server:

HTTP/1.1 200 OK
Content-Length: ${XXX}

OK: ${XXX}

Page |46

PUSH SDK Attendance PUSH Communication Protocol

Annotation:

HTTP status line: Defined with standard HTTP protocol
HTTP response header field:

Content-Length header field: Based to the HTTP 1.1, this header field is generally used to specify the data
length of the response entity. If the response entity size is uncertain, head fields of Transfer-Encoding: ¢
hunked, Content-Length and Transfer-Encoding are supported, all of which are standard definitions of H
TTP and are not described in details here.

Response entity: When the server normally receives data and successfully processes data, OK is sent: ${X
XX} is replied. ${XXX} represents the number of records successfully processed. When an error occurs, the
error description is replied.

Example:

A request from the client:

POST /iclock/cdata?SN=0316144680030&table=OPERLOG&Stamp=9999 HTTP/1.1
Host: 58.250.50.81:8011

User-Agent: iClock Proxy/1.09

Connection: close

Accept: */*

Content-Length: 1698

FVEIN Pin=306 FID=2 Index=0 Size=1648 Valid=1 Tmp=AAAAAAAAAAAAAAAAAAAAAFpLRmMIYA
TFLFLToAUQBQ1Mg+fgXuia23BDrNtwSfgJ8g74H3YHmMXIkFpgetB5eH5yXuBvMLoa6wSx9HNgK7RP80v 1i
+LLY8NCn7PXmD7w15Bp8N1wm/A78PowejZx9jlyWnBZ88K5wVfDDcNT]ifGlvox9iD8sf1937B70Fk4WRI5
RrKq8uD2MngRexMxk5cbDiH+c3xj+CV8Zf1idaDfWbkB8Rnwt/AV8DuUOSvAddBywHMQIMVysfFKNENfZD
9FJ9jrnGeBD5Kcwp7CVySflzOE+wZxjWFVY6fgreXHBd6B4ov4BXBX+GulZ4pazBTINiG8kf4h/DHxGaFxYe
+yh+01sICDsPcweuB/SHnA+UnqwG3AvnA88DZg/vhmaaV4dsWzwerBn1jLcN8wu/ErITiR+YHVscTwy2w
daC5uEmxKbwZ+AGeB5fFt6WLVa8kq/gvqqv8LvwsBAACAgIHAQABAAEGAUxyAQkcIP9SAAohGhchAQA
AEAEAAQYFASBPAgYGB1YKAQEMBgAACg8HFQODDAOEAg8CCBQDAXtLDWMA40CUFEBNVSQYDDRNJJg
8CAACJFBMMAQQiIYA8BMAwWhZHAcEehMCACYEAAWACQsJBQAFBAYXAAknpwQGJ6EIBAUPIXwFBwQPOg
QCBAARGz8WCAIAGUQWBggLhyMIBJQIBAIIAQUEAgMPAWUACQAFUAABE/8EBWkQEgABCRECBWQFFEY
NCACcCFiJ3YWUACTpKLgwBDn8yDApjFAIBEWAAAWACBgEAAAECAUMBAWBCAAACAQIBAAEABAMBAQ
UEAQMCBROx/z4CAhUhSk8GAAcIDhUBNgsLDQMBAQAAAAYDAAAAAAEEAQAHBWEGQWEIAAJe/zQBA
AYY/30GAAABAAICAgGAABAMAAAEFFAgAAAOEAAEUAgABAQEABWEECQMWGAIBDSIHASH/HQQICIQeB
gYMCgsIAWEBDSBOIBEJAjLbQgkIB245BQYKCAAEAAEDAWEDDgcKAQIBAhwABB+4DAQO0IAFCAgXFWM
BByNDCgYBABUQGSYDAwItYhMIATGO9KQwLV0oCBBKEAQgBDggHAQADBWJIDAXAS6AIGFXYXBgMiRXQN
CgMXvCMOBQIXGrxABgkGJQ4YBQEQHxUJBUgNCgggAwIBAgMKAAAAAgMCIWADAZUAAAEAAWAAAB
4BAAEAAAAAAAAAA1j/JgQGAXf/fAMBAgKLAAEEAGIAAAAEAAEAAWEAAAABAAQAAAAAAAABAAAAAR
gQAQABAjP/KQMAAAIDAQEBBAIEBAOCAAOUAgMBRAYCACOBAQAAAASDAgGAAAgGEJAAMDHQABEIWNA
QQnRA8BDAwC5IDICAQAIETAbAAEGMO00eAQApPYCIKA/81CwU5DAIGAAEEBQQABQACKAAGG2MEAXKpF
QMBCTKKAAUCFSYJAQABDBYEGwWIBAjUrIQUDO/8eCwSMRAQACAQABQEABgAAAAMAAABAAAMUAAA
AAwgCBQMFCQcCBBNECgMAAAQVZhABAAhZ/DIBACL/XQgDJIEHAgwWFAQEAAACDAAAAAQEDAAACAA

Page |47

PUSH SDK Attendance PUSH Communication Protocol

AAAWEAAQEFCQEBBAEHIAIAAQELFRQEAWICS/8rBQEDRVQUBAYODWQAAAgAAAANAAAAAAAA
A response from the server:

HTTP/1.1 200 OK

Server: nginx/1.6.0

Date: Thu, 30 Jul 2015 07: 25: 38 GMT
Content-Type: text/plain
Content-Length: 4

Connection: close

Pragma: no-cache

Cache-Control: no-store

OK: 1

Uploading Unified Templates

If the PushProtVer is greater than or equal to 2.2.14 in configurations distributed by the server, a unified
format should be used for the uploading or downloading of new biological identification templates. The
Type in data is used to identify the type of biological identification templates. The unified format applies to
the palm template among others.

Request message from the client

POST /iclock/cdata?SN=${SerialNumber}&table=BIODATA&Stamp=5${XXX} HTTP/1.1
Host: ${ServerlP}:${ServerPort}

Content-Length: ${XXX}

${DataRecord}

Note:

HTTP Request Method: POST method

URI: /iclock/cdata

HTTP Version: 1.1

Client Configuration Information

SN: ${Required} represents the series number of the client.
table=BIODATA: ${Required}

Stamp: ${Optional} represents the latest time stamp for the delivery of a unified template to the server (u
navailable).

Page |48

PUSH SDK Attendance PUSH Communication Protocol

Host Header Field: ${Required}

Content-Length Header Field : ${Required}

Other Header Field: ${Optional}

Request Entity: ${DataRecord}, data about the unified templates in the following data format:

BIODATAS{SPIPin=3${XXX}${HTINo=S${XXX}${HT}Hndex=5${XXX}${HT}Valid=${XXX}${HT}Duress=${XXX}${H
TIType=S${XXX}${HTIMajorVer=S${XXX}${HTIMinorVer=${XXX}${HT}Format=${XXX}${HTITmp=S${XXX}

Note:
Pin=${XXX}: Employee No.
No=${XXX}: Number of specific biological individual, 0 by default.

[Fingerprints] No.: 0 to 9, corresponding to the little finger/the fourth finger/the middle finger/the index
finger/the thumb on the left hand, and the thumb/the index finger/the middle finger/the fourth finger/t
he little finger on the right hand.

[Finger Vein]: The same as [Fingerprints].

[Face]: 0

[Irises]: O for the left eye and 1 for the right eye.
[Palms]: O for the left hand and 1 for the right hand.

Index=${XXX}: Template No. of a specific biological individual, for example, multiple templates stored for
a finger that counts from 0.

Valid=${XXX}: Identifier of validity, O: Invalid and 1: Valid, with 1 as the default.
Duress=${XXX}: Identifier of duress, 0: Under no duress and 1: Under duress, with 0 as the default.
Type=${XXX}: Type of biological identification
Value Meaning
0 Universal
1 Fingerprint
2 Face

3 Voiceprint

4 ris
5 Retina
6 Palmprint

7 Fingervein

8 Palm

Page |49

PUSH SDK Attendance PUSH Communication Protocol

9 Visible light face

MajorVer=${XXX} : For example, for the fingerprint algorithm version 10.3, the major version is 10 and th
e minor version is 3.

[Fingerprints]: 9.0, 10.3 and 12.0.
[Finger Vein]: 3.0

[Face]: 5.0,7.0and 8.0

[Palms]: 1.0

MinorVer=${XXX} : For example, for the fingerprint algorithm version 10.3, the major version is 10 and t
he minor version is 3.

[Fingerprints]: 9.0 and 10.3.

[Finger Vein]: 3.0

[Face]: 5.0,7.0and 8.0

[Palms]: 1.0

Format=${XXX}: Template format, for example, the ZK\ISO\ANSI format for fingerprints.
[Fingerprints]

Value Format

0 ZK

1 1SO

2 ANSI

[Finger Vein]

Value Format

0 ZK

[Face]

Value Format

0 ZK

[Palms]

Value Format

0 ZK

Tmp=${XXX}: Template data, with base64 encoding required for raw binary fingerprint templates.

${LF}is used to connect multiple entries.

Page |50

PUSH SDK Attendance PUSH Communication Protocol

Normal response message from the server

HTTP/1.1 200 OK

Content-Length: ${XXX}

......

OK:${XXX}

Note:

HTTP Status Line: The standard HTTP definition is used.
HTTP Response Header Field:

Content-Length Header field: According to HTTP 1.1, the data length of the specified response entity in t
he header field is usually used. If the length of the response entity is uncertain, Transfer-Encoding: chunk
ed, Content-Length and Transfer-Encoding are also supported, whose header fields are all in compliance
with the standard HTTP definition and require no elaboration here.

Response Entity: When data is received normally and processed successfully by the server, OK:${XXX} is r
eturned, with ${XXX} representing the number of successfully processed record entries. When an error o
ccurs, error description is simply returned.

Example

Request from the client:

POST /iclock/cdata?SN=0316144680030&table=BIODATA&Stamp=9999 HTTP/1.1
Host: 58.250.50.81:8011

User-Agent: iClock Proxy/1.09

Connection: close

Accept: */*

Content-Length: 1736

BIODATA Pin=306 No=0 Index=2 Valid=1 Duress=0 Type=8 MajorVer=1 MinorVer=0 Format=0 Tm
p=AAAAAAAAAAAAAAAAAAAAAFPLRmMIYATFLFLToOAUQBQ1Mg+fgXuia23BDrNtwSfgJ8g74H3YHmXIKF
pgetB5eH5yXuBvMLoab6wSx9HNgK7RP80v1i+LLY8NCn7PXmD7w15Bp8N1wm/A78PowejZx9jlyWnBZ88
K5wVfDDcNTjifGlvox9iD8sf1g37B70Fk4WRI5SRrKq8uD2MngRexMxk5cbDiH+c3xj+CV8Zf1idaDfWbkB8Rn
wt/AV8Du0SvAddBywHMQIMVysfFKNENfZDIF J9jrnGeBD5Kcwp7CVySflzOE+wZxjWFVY6fgreXHBd6B4o
v4BXBX+GulZ4pazBTINiG8kf4h/DHxGaFxYe+yh+0O1sICDsPcweuB/SHnA+UnqwG3AvnA88DZg/vhmaaV4
dsWzwerBn1jLcN8wu/ErITiR+YHVsc1wy2wdaC5uEmxKbwZ+AGeB5fFt6WLVa8kq/gvgqv8LvwsBAACAgI

Page |51

PUSH SDK Attendance PUSH Communication Protocol

HAQABAAEGAUxyAQkclPO9SAAohGhchAQAAEAEAAQYFASBPAQYGB1YKAQEMBgAACg8HFQODDAOEAg

8CCBQDAxtLDWM40CUFEBNVSQYDDRNJJg8CAACJFBMMAQQiIYABMAwWhZHAcCEehMCACYEAAWACQsJB
QAFBAYXxAAknpwQGJ6EIBAUPIXwFBwQPOgQCBAARGz8WCAIAGUQWBggLhyMIBJQIBAIIAQUEAgGMPAW
UACQAFUAABE/8EBWkQEgABCRECBWQFFEYNCACCFiJ3YWUACTpKLgwBDNn8yDApjFAIBEWAAAWACBQE

AAAECAUMBAWBCAAACAQIBAAEABAMBAQUEAQMCBROx/z4CAhUhSK8GAACIDhUBNgsLDQMBAQAAA

AYDAAAAAAEEAQAHBWEGQWEIAAJe/zQBAAYY/30GAAABAAICAGAABAMAAAEFFAgAAAOEAAEUAQAB

AQEABWEECQMWGAIBDSIHASH/HQQICIQeBgYMCgsIAWEBDSBOIBEJAjLbQgkIB245BQYKCAAEAAEDAWE
DDgcKAQIBAhwABB+4DAQO0iAFCAgXFwMBBYNDCgYBABUQGSYDAwWItYhMIATGOKQwLVOoCBBKEAQg
BDggHAQADBWJDAXAS6AIGFXYXBgMiRXxQNCgMXvCMOBQIXGrxABgkGJQ4YBQEQHXUJBUgNCgggAwIB
AgMKAAAAAgMCIWADAZUAAAEAAWAAABABAAEAAAAAAAAAAT)/IgQGAXF/FAMBAgKLAAEEAGIAAAAE
AAEAAWEAAAABAAQAAAAAAAABAAAAARgQAQABAjP/KQMAAAIDAQEBBAIEBAOCAAOUAgMBRAYCAC
0BAQAAAAsDAgAAAQEJAAMDHgABEIWNAQQNRABDAwWCSIDICAQAIETABAAEGMO0eAQAPYCIKA/81Cw
U5DAIGAAEEBQQABQACKAAGG2MEAXxkpFQMBCTKKAAUCFSYJAQABDBYEGwWIBAjUrIQUDO/8eCwSMRA

QACAQABQEABgAAAAMAAABAAAMUAAAAAWGCBQMFCQcCBBNECgMAAAQVZhABAAhZ/DIBACL/XQg
DJIEHAgwFAQEAAACDAAAAAQEDAAACAAAAAWEAAQEFCQEBBAEHIAIAAQELFRQEAWICS/8rBQEDRVQU
BAYODwWQAAAgAAAANAAAAAAAA

Response from the server:

HTTP/1.1 200 OK

Server: nginx/1.6.0

Date: Thu, 30 Jul 2015 07:25:38 GMT
Content-Type: text/plain
Content-Length: 4

Connection: close

Pragma: no-cache

Cache-Control: no-store

OK:1

Uploading User Photo

The configuration PushProtVer parameter sent by the server for initialization information exchange is
greater than or equal to version 2.2.14.

A request message from the client:

POST /iclock/cdata?SN=${SerialNumber}&table=OPERLOG&Stamp=${XXX} HTTP/1.1
Host: ${ServerlIP}: ${ServerPort}
Content-Length: ${XXX}

Page |52

PUSH SDK Attendance PUSH Communication Protocol

${DataRecord}

Annotation:

HTTP request method: POST method

URI: /iclock/cdata

HTTP protocol version: 1.1

Client configuration information:

SN: ${Required} Serial number of the client
table=OPERLOG: ${Required}

Stamp: ${Optional} Latest timestamp at which the user photo is uploaded to the server. (For details, see t
he "OPERLOGStamp" parameter in "Initializing Information Exchange".)

Host header field: ${Required}

Content-Length header field: ${Required}

Other header fields: ${Optional}

Request entity: ${DataRecord}, fingerprint template data, in the following format:

USERPICS{SPIPIN=S${XXX}${HT}FileName=S${XXX}${HT}Size=S${XXX}${HT}Content=${XXX}
Note:

FileName=${XXX}: Filename of the user photo, with only the jpg format supported currently.

Content=${XXX}: When the user photo is transmitted, base64 coding needs to be conducted for the origi
nal binary user photo.

Size=${XXX}: Length of the user photo after base64 coding.

${LF} is used to connect multiple records.

A normal response message from the server:

HTTP/1.1 200 OK

Content-Length: ${XXX}

OK: ${XXX}

Page |53

PUSH SDK Attendance PUSH Communication Protocol

Annotation:

HTTP status line: Defined with standard HTTP protocol
HTTP response header field:

Content-Length header field: Based on the HTTP 1.1, this header field is usually used to specify the data |
ength of the response entity. If the response entity size is uncertain, head fields of Transfer-Encoding: ch
unked, Content-Length and Transfer-Encoding are supported, all of which are standard definitions of HT
TP and are not described in details here.

Response entity: When the server normally receives data and successfully processes data, OK is sent: ${X
XX} is replied. ${XXX} represents the number of records successfully processed. When an error occurs, the
error description is replied.

Example:

POST /iclock/cdata?SN=0316144680030&table=OPERLOG&Stamp=9999 HTTP/1.1
Host: 58.250.50.81: 8011

User-Agent: iClock Proxy/1.09

Connection: close

Accept: */*

Content-Length: 1684

USERPIC PIN=123 FileName=123.jpg Size=10 Content=AAAAAAAAAA......

A response from the server:

HTTP/1.1 200 OK

Server: nginx/1.6.0

Date: Thu, 30 Jul 2015 07: 25: 38 GMT
Content-Type: text/plain
Content-Length: 4

Connection: close

Pragma: no-cache

Cache-Control: no-store

OK: 1

Uploading Data Packets
The PushProtVer is greater than or equal to 2.2.14 in configurations distributed by the server

Request message from the client

POST /iclock/cdata?SN=${SerialNumber}&table=OPERLOG&ContentType=${Value} HTTP/1.1
Host: ${ServerlP}:${ServerPort}

Content-Length: ${XXX}

Page |54

PUSH SDK Attendance PUSH Communication Protocol

${DataPack}

Note:

HTTP Request Method: POST method

URI: /iclock/cdata

HTTP Version: 1.1

Client Configuration Information:

SN: ${Required} represents the series number of the client.
table=OPERLOG: ${Required}

ContentType: Entity data format, which currently supports the following
${Value} Meaning

tgz tgz as the compressed format of data packets
Host Header Field: ${Required}

Content-Length Header Field: ${Required}

Other Header Field: ${Optional}

Request Entity:${DataPack}. For the data format of data packets, refer to the format of other data typ
es.

Multiple entries are connected with {LF} and then, packaged. For example,
Package the following data to transmit as entity data:

USERPIN=1 Name= Pri=0 Passwd=0 Card=89776433 Grp=1 TZ=0001000100000000 Verify=-1
ViceCard=123456789

FPPIN=1 FID=1 Size=1336 Valid=1 TMP=SqFTUzIxAAAD4uUECAUHCc7QAAAb42kBAAAAgw8hXul
vAPWPOADwWAI7tjwBKAH4PIgBU4vcPfABhAMcPKOJIAOsPPACMAGbtZABIAHEPdgBg4hEPzWBOAFUPiuJ/
AAWPOABAAOVtTACYAFOPkQCi4uwPmgCiANgP1+KzACgPdwAMAFLtiADJADIPIgDP4kwPtADTAPQPdeL
bADsPZQAhAELt6QDOAC4PQAD64rsPOWAFAfgPyeliAb8PvgDhAUHssQAXAUgOXwBH48EONwWBFAYkOa
eJLAa0OVgCOASrsYgBOAZcOCwvAbJqCS383/64TXp0icG8MpYY8kwHt+JJZh674UljJ54v3nXwlc6d9rpwl
cplOgoAaBAx2g4Ava7MH4wylEA+fuY9ehY/9S5HAd2MROJPzBtVBEXxK278PNfvjk7RabcRgxIU8QOgOw+il
XWgz3/UX02wMzCP8WzOyyHygKKQnm9N/wuhGqgcuv/doGbeohqKBOSgJ79+X8tmo+EPleh/d8FGuuciy
alpXtigDz2PyQ+tzuh+RpSZ9LsYJdVfSfc1wx1c3JPtXyRTgPCNgECMxTNwwBp6nx1wAMAmMckGw+sBhg6
AdIsECQOCK/dAVMARxd8vccHBhcLACATCwrgHAFkwd8SXCwODMf1FQMBW1ADd 1JL/w2fAeEbAUOOBI
keAwJacCQNwSgAV/jOFxYpOn3kKAIBdAPjA/RxtFADyXZ4HwWMAdwX/AhH/CQwcDz1/pwf3CJ84Ag90C/8
E208HNAGKBdpbAQQsARWQDHTTAWPIEBcU6ZYNDWMIEAGGscYf2AfF71//BQllpn1v/CwCNfMbIRSJBw
AwAhX1FkMIjkXYNAIlyCzDVXHUrBEQA8hSI4LSMuwP3BQhLFUZYL/v79/f/B7i9WIwkASZhiwU58BOJMnFz
AhMHVAFd/5S5T+wP/+08E10gcAlqCXngEMA3ygFjY1/8AFwAviUaVed8FcygCfRB3//8A4/4r/wh8HANWO)
EwFGAPzw9dU//7A08H+0z//PsD+/80AVSrd/v36l/06/8Mdwf8HAE/NIoNp6AFzzVOdwKPACeKNzSOpc8A
6Bw020UzBcf8DxX/X1v8HALXWLTo+w+gBdN5Aa3Q6xArie943VMB7zQBmCEJpcRgQMMLDPaL//v3+/P8
4/0Yc/EcGENQI/ODA9RE5G70+NTvA/xz9/f3///06wfwd/gQQyic9oAMTWCIA/wMQwO06/eERPDc9/xfVaUZ

Page |55

PUSH SDK Attendance PUSH Communication Protocol

Swf4+wP3A0Pv1GzRzwWwaEKNLpNPBPv7A/P4/+v0f/MD+wMDAOV/95hFRVWmHA9XPW5/BAAUAwe/x
WA::

USERPIN=2 Name= Pri=0 Passwd=0 Card=89776433 Grp=1 TZ=0001000100000000 Verify=-1
ViceCard=123456789

USERPIN=3 Name= Pri=0 Passwd=0 Card=89776433 Grp=1 TZ=0001000100000000 Verify=-1
ViceCard=223456789

USERPIN=4 Name= Pri=0 Passwd=0 Card=89776433 Grp=1 TZ=0001000100000000 Verify=-1
ViceCard=323456789

USERPIN=5 Name= Pri=0 Passwd=0 Card=89776433 Grp=1 TZ=0001000100000000 Verify=-1
ViceCard=423456789

Normal response message from the server

HTTP/1.1 200 OK

Content-Length: ${XXX}

OK:${XXX}

Note:
HTTP Status Line: The standard HTTP definition is used.
HTTP Response Header Field:

Content-Length Header field: According to HTTP 1.1, the data length of the specified response entity in t
he header field is usually used. If the length of the response entity is uncertain, Transfer-Encoding: chunk
ed, Content-Length and Transfer-Encoding are also supported, whose header fields are all in compliance
with the standard HTTP definition and require no elaboration here.

Response Entity: When data is received normally and processed successfully by the server, OK:${XXX} is r
eturned, with ${XXX} representing the number of successfully processed record entries. When an error o
ccurs, error description is simply returned.

Uploading Comparison Photo

The configuration PushProtVer parameter sent by the server for initialization information exchange is
greater than or equal to version 2.2.14.

A request message from the client:

POST /iclock/cdata?SN=${SerialNumber}&table=OPERLOG&Stamp=${XXX} HTTP/1.1

Host: ${ServerlP}: ${ServerPort}

Page |56

PUSH SDK

Attendance PUSH Communication Protocol

Content-Length: ${XXX}

${DataRecord}

Annotation:

HTTP request method: POST method

URI: /iclock/cdata

HTTP protocol version: 1.1
Client configuration information:
SN: ${Required} Serial number of the client

table=OPERLOG: ${Required}

Stamp: ${Optional} Latest timestamp at which the comparison photo is uploaded to the server. (For deta
ils, see the "OPERLOGStamp" parameter in "Initializing Information Exchange".)

Host header field: ${Required}
Content-Length header field: ${Required}

Other header fields: ${Optional}

Request entity: ${DataRecord}, comparison photo data, in the following format:

BIOPHOTOS{SPIPIN=${XXX}${HT}FileName=3${XXX}${HT}Type=${XXX}${HT}Size=${XXX}${HT}Content=

SPXXX}
Note:

FileName=${XXX}: Filename of the biometric image, with only the jpg format supported currently.

Type=5${XXX} : Biometric identification type

Value
0

1

Meaning
common
fingerprint
face

vocal print
iris

retina
palm print

finger vein

Page |57

PUSH SDK Attendance PUSH Communication Protocol

8 palm
9 visible light face
Size=${XXX}: Length of the biometric photo after base64 coding.

Content=${XXX}: When the biometric photo is transmitted, base64 coding needs to be conducted for th
e original binary biometric photo.

A normal response message from the server:

HTTP/1.1 200 OK
Content-Length: ${XXX}

......

Annotation:

HTTP status line: Defined with standard HTTP protocol

HTTP response header field:

Content-Length header field: Based on the HTTP 1.1, this header field is usually used to specify the data |
ength of the response entity. If the response entity size is uncertain, head fields of Transfer-Encoding: ch
unked, Content-Length and Transfer-Encoding are supported, all of which are standard definitions of HT
TP and are not described in details here.

Response entity: When the server normally receives data and successfully processes data, OK issent. Whe
n an error occurs, the error description is replied.

Example:
Request from the client:
POST /iclock/cdata?SN=0316144680030&table=OPERLOG&Stamp=9999 HTTP/1.1
Host: 58.250.50.81:8011
User-Agent: iClock Proxy/1.09
Connection: close
Accept: */*

Content-Length: 1684

BIOPHOTO PIN=123 FileName=123.jpg Type=2 Size=95040 Content=AAAA.......

A response from the server:

Page |58

PUSH SDK Attendance PUSH Communication Protocol

HTTP/1.1 200 OK

Server: nginx/1.6.0

Date: Thu, 30 Jul 2015 07: 25: 38 GMT
Content-Type: text/plain
Content-Length: 4

Connection: close

Pragma: no-cache

Cache-Control: no-store

OK

Uploading Error Log

The configuration PushProtVer parameter sent by the server for initialization information exchange is

greater than or equal to version 2.4.1.

A request message from the client:

POST /iclock/cdata?SN=${SerialNumber}&table=ERRORLOG&Stamp=${XXX} HTTP/1.1
Host: ${ServerlP}: ${ServerPort}
Content-Length: ${XXX}

${DataRecord}

Annotation:

HTTP request method: POST method

URI: /iclock/cdata

HTTP protocol version: 1.1

Client configuration information:

SN: ${Required} Serial number of the client
table=ERRORLOG: ${Required}

Stamp: ${Optional} Latest timestamp at which the error log is uploaded to the server. (For details, see the
"ERRORLOGStamp" parameter in "Initializing Information Exchange".)

Host header field: ${Required}

Content-Length header field: ${Required}

Other header fields: ${Optional}

Request entity: ${DataRecord}, error log data, in the following format:

ERRORLOG ErrCode=${XXX}$(HT)ErrMsg=${XXX}$(HT)DataOrigin=${XXX}$(HT)CmdId=${XXX}$(HT)Additi

Page |59

PUSH SDK Attendance PUSH Communication Protocol

onal=${XXX}
Note:

ErrCode=5%{XXX} : Error code. See appendix 9 for coding instructions.

ErrMsg=${XXX}: Error message

DataOrigin=${XXX} : Data source, dev means device source data, cmd means software sent data.
CmdIld=5${XXX} : Command number issued by the software

Additional=${XXX} : Additional information (base64 data), the native data format is json.

A normal response message from the server:

HTTP/1.1 200 OK
Content-Length: ${XXX}

Annotation:

HTTP status line: Defined with standard HTTP protocol
HTTP response header field:

Content-Length header field: Based on the HTTP 1.1, this header field is usually used to specify the data |
ength of the response entity. If the response entity size is uncertain, head fields of Transfer-Encoding: ch
unked, Content-Length and Transfer-Encoding are supported, all of which are standard definitions of HT
TP and are not described in details here.

Response entity: When the server normally receives data and successfully processes data, OK issent. Whe
n an error occurs, the error description is replied.

Example:
Request from the client:
POST /iclock/cdata?SN=0316144680030&table=ERRORLOG&Stamp=9999 HTTP/1.1
Host: 58.250.50.81:8011
User-Agent: iClock Proxy/1.09
Connection: close
Accept: ¥/*

Content-Length: 71

Page |60

PUSH SDK Attendance PUSH Communication Protocol

ERRORLOG ErrCode=D01E0001 ErrMsg= DataOrigin=cmd Cmdld=123
Additional=

A response from the server:

HTTP/1.1 200 OK

Server: nginx/1.6.0

Date: Thu, 30 Jul 2015 07: 25: 38 GMT
Content-Type: text/plain
Content-Length: 4

Connection: close

Pragma: no-cache

Cache-Control: no-store

OK

Page |61

PUSH SDK Attendance PUSH Communication Protocol

Get Command

If the server needs to operate the equipment, the server generates a command format, waits till the
equipment initiates a request, and then sends a command to the equipment. For the result of command
execution, see Reply Command.

A request message from the client:

Get /iclock/getrequest?SN=5%{SerialNumber}
Host: ${ServerlP}: ${ServerPort}

Annotation:

HTTP request method: GET method

URI: /iclock/getrequest

HTTP protocol version: 1.1

Client configuration information:

SN: ${Required} Serial number of the client
Host head field: ${Required}

Other header fields: ${Optional}

A normal response message from the server:

When no commands are sent, the reply is as follows:

HTTP/1.1 200 OK
Date: ${XXX}
Content-Length: 2

When a command is sent, the reply is as follows:
HTTP/1.1 200 OK
Date: ${XXX}

Content-Length: ${XXX}

Page |62

PUSH SDK Attendance PUSH Communication Protocol

${CmdRecord}

Annotation:

HTTP status line: Defined with standard HTTP protocol
HTTP response header field:

Date header field: ${Required} This header field is used for synchronization with the server time, in GMT f
ormat. For example, Date: Fri, 03 Jul 2015 06: 53: 01 GMT

Content-Length header field: Based on HTTP 1.1, this header field is usually used to specify the data leng
th of the response entity. If the response entity size is uncertain, head fields of Transfer-Encoding: chunk
ed, Content-Length and Transfer-Encoding are supported, all of which are standard definitions of HTTP a
nd are not described in details here.

Response entity: ${CmdRecord}, issued command record, in the following data format:
C: ${CmdID}: ${CmdDesc}${SP}${XXX}
Note:

${CmdID}: This command ID is generated by the server randomly, supporting numbers and letters and w
ith a length not over 16 digits. The client needs to reply to the command with this command ID. For deta
ils, see the "Reply Command" function as follows.

${CmdDesc}: Command description falls into data commands and control commands. The data comman
d is unified as the "DATA" description and detailed in the following "Data Command" function, and all kin
ds of control commands are different descriptions.

${LF}is used to connect multiple records.

DATA Command

When ${CmdDesc} in a command issued by the server is “DATA”, this command is deemed as a data
command. The client data can be added, deleted, modified, or queried, but different service data supports
different operations. For details, see the following.

UPDATE Subcommand

Adding or modifying data: Whether adding or modifying depends on whether corresponding data exists
on the client, and this operation has nothing to do with the server. The following shows the command
format:

C: ${CmdID}: DATAS{SP}UPDATES${SP}${TableName}${SP}${DataRecord}
Note:
UPDATE: This description is used to represent the operation of adding or modifying data.

${TableName}: Different names of service data tables, for example, the user information USERINFO. The f
ollowing describes specific supported data.

Page |63

PUSH SDK Attendance PUSH Communication Protocol

${DataRecord}: Service data records in the form of key=value. Different service data has different key des
criptions. The following describes the specifics.

User Information

The command format is:

C:${CmdID}:DATAS{SP}UPDATES{SP}USERINFOS{SPIPIN=S${XXX}${HT}Name=S${XXX}S{HT}Pri=S{XXX}S{HT}
Passwd=${XXX}${HT}Card=${XXX}${HT}Grp=S${XXX}${HTITZ=${XXX}${HT}Verify=${XXX}${HT}ViceCard=
SIXXX}

Note:

PIN=S${XXX}: User ID

Name=5${XXX}: User name. When the equipment is in Chinese, the GB2312 code is used. When the equip
ment is in another language, the UTF-8 code is used.

Pri=${XXX}: User privilege value, with the meaning described as below
Value Description
0 Normal user

2 Registrar

6 Administrator

10 User-defined

14 Super administrator

Passwd=${XXX}: Password
Card=${XXX}: Card number, supporting two formats.

a. hexadecimal data, in the format of [%02x%02x%02x%02x], representing the first, second, third or fo
urth digit from left to right. For example, if the card number is 123456789, this is: Card=[15CD5B07]

b. string data. If the card number is 123456789, this is: Card=123456789
Grp=${XXX}: Group to which the user belongs, group 1 by default.

TZ=${XXX}: Information on number of the time period used by the user, in the format of XXXXXXXXXXXX
XXXX. Digit 1-4 describe whether the group time period is used, digit 5-8 describe using personal time p
eriod 1, digit 9-12 describe using personal time period 2, and digit 13-16 describe using personal time pe
riod 3.

For example: 0000000000000000 represents use of the group time period.

0001000200000000 represents use of personal time period, with personal time period 1 using the time i
nformation of number 2 time period.

0001000200010000 represents using personal time period, with personal time period 1 using the time in
formation of number 2 time period and personal time period 2 using the time information of number 1 ti
me period.

Page |64

PUSH SDK Attendance PUSH Communication Protocol

Verify=${XXX} : User verification mode, does not contain the field, is null, or is set to -1(use group verificat
ion, if there is no access group, group verification is 0), otherwise see (appendix 7)

ViceCard=${XXX} : User card number (secondary card), string data. If the card number is 123456789 ,Vice
Card=123456789

${LF} is used to connect multiple records.

For how the result of command execution is replied, see the Reply Command function. For the Return
value, see Appendix 1. The format of returned content is:

ID=${XXX}&Return=${XXX}&CMD=DATA

Identity Card Information

The command format is:

C:${CmdID}:DATAS(SP)UPDATES(SP)IDCARDS (SP)PIN=S${XXX}S{HT}ISNNum=S${XXX}S{HTHDNum=S${XXX}
S{HTIDNNum=${XXX}${HT}Name=${XXX}${HT}Gender=${XXX}${HT}Nation=${XXX}${HT}Birthday=${XXX}
${HTIValidinfo=${XXX}${HT}Address=${XXX}${HT}Additionallnfo=${XXX}${HT}Hssuer=${XXX}${HT}Photo=
SIXXXIS{HTIFPTemplate 1=${XXX}${HTIFPTemplate2=${XXX}${HT}IReserve=${XXX}${HT}Notice=${XXX}

Note:

PIN=${XXX} : User ID. If the user's information is not bound to the identity card, then the value of PIN is 0.
SNNum=${XXX} : Physical card number of identity card

IDNum=${XXX} : Citizen id number

DNNum=${XXX} : Identity card serial number (card body management number)
Name=5${XXX} : Id Name, using utf-8 encoding

Gender=${XXX} : Gender code

1," male"

2," female"

Nation=${XXX}: Ethnic code

0,"Decoding error”

1,” Han”

2,” Mongol”

3,"Hui”

4," Tibetan”

5,” Uighur”

Page |65

PUSH SDK

Attendance PUSH Communication Protocol

6,"Miao”
7,"Yi"
8,"Zhuang”
9,"Buyi”
10,"Korean”
11,"Manchu”
12,"Dong”
13,"Yao”
14,"Bai”
15,"Tujia”
16,"Hani”
17,"Kazakh”
18,"Dai”
19,"Li"
20,"Lisu”
21,"Wa"
22,"She”
23,"Gaoshan”
24,"Lahu”
25,"Shui”
26,"Dongxiang”
27,"Naxi”
28,"Jingpo”
29,"Kirghiz”
30,"Du”
31,"Daur”
32,"Mulam”
33,"Qiang”
34,"Blang”

35,"Salar”

Page |66

PUSH SDK

Attendance PUSH Communication Protocol

36,"Maonan”
37,"Gelao”
38,"Xibe”
39,”Achang”
40,"Pumi”
41,"Tajik”
42,"Nu”
43,"Uzbek”
44,"Russian”
45,"Evenki”
46,"De’ang”
47,"Bonan”
48,"Yugur”
49,"Gin”
50,"Tatar”
51,"Drung”
52,"0Oroqin”
53,”Hezhen”
54,"Menba”
55,”Lhoba”

56,"Jin0”

57,"Coding error”

97,"Other”

98,” Foreign origin”

Birthday=${XXX} : Date of birth (format: yyyyMMdd)

Validinfo=${XXX} : Period of validity, start date and end date (format: yyyyMMddyyyyMMdd)

Address=${XXX}: Address, encoded in UTF-8

Additionallnfo=${XXX}: Machine read appends address, encoded in UTF-8

Issuer = ${XXX}: Issuing authority, use UTF-8 encoding.

Photo=${XXX} : Photo data stored by identity card, which is encrypted and converted into base64 data c

Page |67

PUSH SDK Attendance PUSH Communication Protocol

ontent for transmission.

FPTemplate1=${XXX} : Fingerprint 1_ fingerprint characteristic data, and converted into base64 data con
tent for transmission.

FPTemplate2=${XXX} : Fingerprint 2_ fingerprint characteristic data, and converted into base64 data con
tent for transmission.

Reserve=${XXX}: Reserve field

Notice=${XXX} : Note information, encoded in UTF-8.

For how the result of command execution is replied, see the Reply Command function. For the Return
value, see Appendix 1. The format of returned content is:

ID=${XXX}&Return=${XXX}&CMD=DATA

Fingerprint Template

The command format is:

C: ${CmdID}: DATAS{SP}UPDATES{SP}FINGERTMP${SPIPIN=${XXX}${HTIFID=${XXX}${HT}Size=${XXX}${H
TIValid=${XXX}${HTITMP=${XXX}

Note:

PIN=${XXX}: User ID

FID=${XXX}: Finger number, valued from 0 - 9.

Size=${XXX}: Length of binary data of the finger template after base64 coding

Valid=${XXX}: to describe the template validity and duress mark, with the following values and meaning
s:

Value and description
0 Invalid template
1 Normal template
3 Duress template

TMP=${XXX}: When the fingerprint template is transmitted, base64 coding needs to be conducted for th
e original binary fingerprint template.

${LF} is used to connect multiple records.

Note: The fingerprint algorithm version supported by this command is less than or equal to 10.0.

For how the result of command execution is replied, see the Reply Command function. For the Return
value, see Appendix 1. The format of returned content is:

Page |68

PUSH SDK Attendance PUSH Communication Protocol

ID=${XXX}&Return=${XXX}&CMD=DATA

Face Template

The command format is:

C: ${CmdID}: DATAS{SP}UPDATES{SP}FACES{SPIPIN=S{XXX}${HTIFID=${XXX}S{HT}Valid=${XXX}${HT}Size
=S${XXX}S{HTITMP=S${XXX}

Note:

PIN=${XXX}: User ID

FID=${XXX}: Face template number, valued from 0.

Size=${XXX}: Length of binary data of the face template after base64 coding

Valid=${XXX}: Face template validity mark, with the following values and meanings: Value and descriptio
n

0 Invalid template
1 Normal template

TMP=%{XXX}: When the face template is transmitted, base64 coding needs to be conducted for the origi
nal binary face template.

${LF} is used to connect multiple records.

For how the result of command execution is replied, see the Reply Command function. For the Return
value, see Appendix 1. The format of returned content is:

ID=${XXX}&Return=${XXX}&CMD=DATA

Finger Vein Template

The command format is:

C:${CmdID}:DATAS{SP}UPDATES{SP}FVEINS{SP}Pin=${XXX}${HT}IFID=${XXX}${HT}Hndex=5${XXX}${HT}Vali
d=S${XXX}${HT}Size=${XXX}${HTITmp=5${XXX}

Note:
Pin=${XXX} : User ID
FID=${XXX} : Finger number, (0~9)

Index=${XXX} : One finger has multiple finger vein templates, and Index is the number of finger vein tem
plate (0~2).

SIZE=${XXX}: Length after base64 coding of the finger vein template binary data

Page |69

PUSH SDK Attendance PUSH Communication Protocol

Valid=${XXX} : Valid identification of the finger vein template, the values are as follows:
Value Description

0 invalid template

1 normal template

Tmp=${XXX}: Base64 encoding of the original binary finger vein template is needed when transferring th
e finger vein template.

For how the result of command execution is replied, see the Reply Command function. For the Return
value, see Appendix 1. The format of returned content is:

ID=${XXX}&Return=${XXX}&CMD=DATA
Unified Templates

The following new biometric template will be uploaded and downloaded in a unified format, using Type in
the data to distinguish what Type of biometric template is, using the integrated format: palm template, etc.

The command format is:

C:${CmdID}:DATAS{SP}UPDATES{SP}IBIODATAS{SP}Pin=S${XXX}${HTINo=S${XXX}${HTHNndex=S${XXX}${HT}V
alid=S${XXX}${HT}Duress=${XXX}${HT}Type=S${XXX}${HT}MajorVer=${XXX}${HTIMinorVer=${XXX}${HT}Fo
rmat=${XXX}${HT}Tmp=5${XXX}

Note:

Each field explains see uploading Unified Templates.

For how the result of command execution is replied, see the Reply Command function. For the Return
value, see Appendix 1. The format of returned content is:

ID=${XXX}&Return=${XXX}&CMD=DATA
User Photo

The command format is:
C: ${CmdID}: DATAS{SP}UPDATES{SP}USERPICS{SP}PIN=${XXX}${HT}Size=${XXX}${HT}Content=5${XXX}
Note:
PIN=${XXX}: User ID

Size=${XXX}: Length of binary data of the user photo after base64 coding

Page |70

PUSH SDK Attendance PUSH Communication Protocol

Content=${XXX}: When the user photo is transmitted, base64 coding needs to be conducted for the origi
nal binary user photo.

${LF} is used to connect multiple records.

For how the result of command execution is replied, see the Reply Command function. For the Return
value, see Appendix 1. The format of returned content is:

ID=${XXX}&Return=${XXX}&CMD=DATA

Comparison Photo

The command format is:

C:${CmdID}:DATAS{SP}UPDATES{SP}BIOPHOTOS{SPIPIN=S{XXX}${HT}Type=S{XXX}${HT}Size=S${XXX}${H
TiContent=${XXX}${HTIFormat=${XXX}${HTIUrl=${XXX}${HT}PostBackTmpFlag=${XXX}

Note:

PIN=${XXX} : User ID

Type=${XXX} : Biometric identification type

Value Meaning

common

fingerprint

face (near-infrared)

vocal print

iris

retina

palm print

finger vein

palm

9 visible light face

Size=${XXX}: Length of the biometric photo after base64 coding.

Content=%{XXX}: When the biometric photo is transmitted, base64 coding needs to be conducted for th
e original binary biometric photo.

Url=${XXX} : Server file storage address, currently only supports JPG format.

Format=${XXX} : Send mode, 0: base64 mode, 1: url mode

PostBackTmpFlag=${XXX}: Whether to return the template data after image conversion (0: not required,
1: required). No PostBackTmpFlag parameter, it is not required to return by default.

${LF}is used to connect multiple records.

Note:

Url is the relative path of the occasion, directly send relative path.

ONOULT DA WN = O

For how the result of command execution is replied, see the Reply Command function. For the Return

value, see Appendix 1. The format of returned content is:

ID=${XXX}&Return=${XXX}&CMD=DATA

Short Message

The command format is:

Page |71

PUSH SDK Attendance PUSH Communication Protocol

C: ${CmdID}: DATAS{SP}UPDATES{SP}SMSS${SPIMSG=${XXX}${HTITAG=S${XXX}${HTIUID=S${XXX}${HT}MIN
=${XXX}S{HT}StartTime=${XXX}

Note:

MSG=${XXX}: Content of the short message, supporting up to 320 bytes. When the equipment is in Chin
ese, the GB2312 code is used. When the equipment is in another language, the UTF-8 code is used.
TAG=S${XXX}: Type of the short message, with the following values and meanings:

Value and description

253 Public short message

254 User short message

255 Reserved short message

UID=${XXX}: Number of the short message, supporting only integer.

MIN=${XXX}: Valid duration of the short message, in minute.

StartTime=${XXX}: Starting time for the short message to take effect, in the format of XXXX-XX-XX XX: X
X: XX. For example, 2015-07-29 00: 00: 00

${LF} is used to connect multiple records.

For how the result of command execution is replied, see the Reply Command function. For the Return
value, see Appendix 1. The format of returned content is:

ID=${XXX}&Return=${XXX}&CMD=DATA

Personal Short Message User List

The command format is:

C: ${CmdID}: DATAS{SP}UPDATES{SP}USER_SMSS{SP}PIN=S{XXX}${HTIUID=${XXX}
Note:

PIN=${XXX}: User ID

UID=${XXX}: Number of the short message, supporting only integer.

${LF} is used to connect multiple records.

For how the result of command execution is replied, see the Reply Command function. For the Return
value, see Appendix 1. The format of returned content is:

ID=${XXX}&Return=${XXX}&CMD=DATA
Publicity Picture

The command format is:

C:${CmdID}:DATAS{SP}UPDATES{SP}ADPICS{SP}Index=3${XXX}${HT}Size=S${XXX}${HT}Extension=5{XXX}
${HT}Content=${XXX}

Note:

Index=${XXX}: Image index

Size=${XXX} : Image size

Extension=${XXX}: Image extension

Content=${XXX}: Image Base64 encoding

${LF} is used to connect multiple records.

Page |72

PUSH SDK Attendance PUSH Communication Protocol

For how the result of command execution is replied, see the Reply Command function. For the Return
value, see Appendix 1. The format of returned content is:

ID=${XXX}&Return=${XXX}&CMD=DATA
Work Code

The command format is:

C:${CmdID}:DATAS{SP}UPDATES{SP}WORKCODES{SP}PIN=${XXX}${HT}CODE=${XXX}S{HTINAME=${XXX}
Note:

PIN=${XXX} : Working code index

CODE=5%{XXX} : Working code

NAME=${XXX} : Working code name

${LF} is used to connect multiple records.

For how the result of command execution is replied, see the Reply Command function. For the Return
value, see Appendix 1. The format of returned content is:

ID=${XXX}&Return=${XXX}&CMD=DATA
Shortcut Key

The command format is:

C:${CmdID}:DATAS{SPIUPDATES{SP}ShortcutKey${SP}KeylD=${XXX}${HT}KeyFun=${XXX}${HT}StatusCod
e==${XXX}${HT}ShowName=S${XXX}${HT}AutoState=${XXX}S{HTIAutoTime=${XXX}S{HTISun=${XXX}${H
TIMon=${XXX}${HT}Tue=${XXX}${HT}Wed=${XXX}${HT}Thu=S${XXXHHT}Fri=${XXX}${HT}Sat=${XXX}
Note:

KeylD: Shortcut key ID

Value Corresponding key
1 F1
2 F2
3 F3
4 F4
5 F5
6 F6
7 F7
8 F8
KeyFun: Shortcut key function
Value Corresponding function
0 Undefined
1 State key
2 Work code
3 Short message
4 Key for help
5 Check the attendance record
6 Check the final attendance record

StatusCode: Attendance status

Page |73

PUSH SDK Attendance PUSH Communication Protocol

ShowName: Status name

AutoState: Auto switch

AutoTime: Automatic switching time from Monday to Sunday, 08:00; 09:00; 10:00; 11:00; 12:00; 13:00; 14:
00

Sun: Whether to switch on Sunday
Mon: Whether to switch on Monday
Tue: Whether to switch on Tuesday
Wed: Whether to switch on Wednesday
Thu: Whether to switch on Thursday
Fri: Whether to switch on Friday

Sat: Whether to switch on Saturday

For how the result of command execution is replied, see the Reply Command function. For the Return
value, see Appendix 1. The format of returned content is:

ID=${XXX}&Return=${XXX}&CMD=DATA
Access Group

The command format is:

C:${CmdID}:DATAS{SP}UPDATES{SP}AccGroupS${SPHD=${XXX}${HT}Verify=${XXX}${HT}ValidHoliday=5${X
XXIS{HTITZ=${XXX}

Note:

ID: Number of access group

Verify: Group verification mode, with the default value of 0, as shown in (appendix 7)

Validholiday: Valid for holidays: value range 0-1

TZ format: For example: TZ=1; 1; 0; 0: the first number represents whether to use group time period, the
second number represents time period 1, the third parameter represents time period 2, and the fourth p
arameter represents time period 3

For how the result of command execution is replied, see the Reply Command function. For the Return
value, see Appendix 1. The format of returned content is:

ID=${XXX}&Return=${XXX}&CMD=DATA
Access Time Periods

The command format is:

C:${CmdID}:DATAS{SPIUPDATES${SP}AccTimeZoneS${SPIUID=${XXX}${HT}SunStart=${XXX}${HT}SunEnd=
SIXXX}S{HTIMonStart=${XXX}${HTIMonEnd=${XXX}${HT}TuesStart=${XXX}${HT}TuesEnd=S${XXX}${HT}W
edStart=S{XXX}S{HTIWedEnd=${XXX}${HT}ThursStart=S{XXX}S{HTIThursEnd=S${XXX}${HT}FriStart=5{XX
XIS{HTIFriEnd=${XXX}${HT}SatStart=${XXX}${HT}SatEnd=${XXX}

Note:

UID: Time period number

SunStart: Sunday start time, 1159 means 11:59

Page |74

PUSH SDK Attendance PUSH Communication Protocol

SunEnd: Sunday end time, 2359 means 23:59
MonStart: Monday start time
MonEnd: Monday end time
TueStart: Tuesday start time
TuesEnd: Tuesday end time
WedStart: Wednesday start time
WedEnd: Wednesday end time
ThurStart: Thursday start time
ThursEnd: Thursday end time
FriStart: Friday start time

FriEnd: Friday end time

SatStart: Saturday start time
SatEnd: Saturday end time

For how the result of command execution is replied, see the Reply Command function. For the Return
value, see Appendix 1. The format of returned content is:

ID=${XXX}&Return=${XXX}&CMD=DATA
Access Holiday

The command format is:

C:${CmdID}:DATAS{SP}UPDATES{SP}AccHoliday${SP}UID=${XXX}${HT}HolidayName=${XXX}${HT}StartDa
te=S${XXX}${HT}EndDate=S${XXX}${HT}TimeZone=${XXX}

Note:

UID: Holiday number

HolidayName: Holiday name

StartDate: 1123 means November 23"

EndDate: 1125 means November 25

TimeZone: Time period number

For how the result of command execution is replied, see the Reply Command function. For the Return
value, see Appendix 1. The format of returned content is:

ID=${XXX}&Return=${XXX}&CMD=DATA
Access Combined Verification

The command format is:

C:${CmdID}:DATAS{SP}UPDATES${SP}AccUnLockComb${SPIUID=${XXX}${HT}Group1=${XXX}${HT}Group2
=S{XXX}S{HTIGroup3=S${XXX}${HT}Group4=S${XXX}${HT}Group5=${XXX}

Note:

UID: Group verification number

Group1: Group number of people. The group number in the person information

Group2: Group number of people. The group number in the person information

Group3: Group number of people. The group number in the person information

Group4: Group number of people. The group number in the person information

Page |75

PUSH SDK Attendance PUSH Communication Protocol

Group5: Group number of people. The group number in the person information

For how the result of command execution is replied, see the Reply Command function. For the Return
value, see Appendix 1. The format of returned content is:

ID=${XXX}&Return=${XXX}&CMD=DATA
Blacklist of Identity Card Issued

The command format is:

C: ${CmAdID}:DATAS{SPIUPDATES{SP}Blacklist${SP}IDNum=5{XXX}
Note:
IDNum: ID number

For how the result of command execution is replied, see the Reply Command function. For the Return
value, see Appendix 1. The format of returned content is:

ID=${XXX}&Return=${XXX}&CMD=DATA

DELETE Subcommand

To delete data. The command format is:

C: ${CmdID}: DATAS{SP}DELETES{SP}${TableName}${SP}${DataRecord}

Note:

DELETE: This description is used to represent the operation of deleting data.

${TableName}: Different service data table names. For example, the user information is USERINFO, and th
e following describes specific supported data.

${DataRecord}: Condition for deleting data. Different service data supports different conditions. The follo
wing describes the specifics.

User Information

The command format is:

C: ${CmdID}: DATAS{SP}DELETES{SP}USERINFOS{SP}PIN=${XXX}

Note:

PIN=${XXX}: User ID

To delete specified user information, including fingerprint template, face template and user photo.

For how the result of command execution is replied, see the Reply Command function. For the Return
value, see Appendix 1. The format of returned content is:

Page |76

PUSH SDK Attendance PUSH Communication Protocol

ID=${XXX}&Return=${XXX}&CMD=DATA
Fingerprint Template

The command format is:

C:${CmdID}:DATAS{SP}DELETES{SP}FINGERTMP${SP}PIN=${XXX}
C:${CmdID}::DATAS{SP}DELETES{SP}FINGERTMPS${SP}PIN=${XXX}${HT}FID=${XXX}

Note:

PIN=${XXX}: User ID

FID=S${XXX}: Finger number, valued from 0-9.

To delete specified fingerprint template. When only PIN information is transmitted, all fingerprints of the
user are deleted.

For how the result of command execution is replied, see the Reply Command function. For the Return
value, see Appendix 1. The format of returned content is:

ID=${XXX}&Return=${XXX}&CMD=DATA

Face Template

The command format is:

C: ${CmdID}: DATAS{SP}DELETES{SP}FACES{SP}IPIN=${XXX}
Note:

PIN=${XXX}:User ID

To delete specified face template of the user

For how the result of command execution is replied, see the Reply Command function. For the Return
value, see Appendix 1. The format of returned content is:

ID=${XXX}&Return=${XXX}&CMD=DATA

Finger Vein Template

The command format is:

C:${CmdID}:DATAS{SP}DELETES{SP}FVEINS{SP}Pin=${XXX}
C:${CmdID}:DATAS{SP}DELETES{SP}FVEINS{SP}Pin=S{XXX}${HT}FID=${XXX}
Note:

PIN=${XXX}:User ID

FID=${XXX} : Finger number, (0~9)

To delete specified finger vein template of the user

Page |77

PUSH SDK Attendance PUSH Communication Protocol

For how the result of command execution is replied, see the Reply Command function. For the Return
value, see Appendix 1. The format of returned content is:

ID=${XXX}&Return=${XXX}&CMD=DATA

Unified Templates

The command format is:

C:${CmdID}:DATAS{SP}DELETES{SP}BIODATAS{SP}Pin=${XXX}
C:${CmdID}:DATAS{SP}DELETES{SP}BIODATAS{SPIPin=${XXXH{HT}Type=5${XXX}
C:${CmdID}:DATAS{SP}DELETES{SP}BIODATAS{SPIPin=${XXXH{HT}Type=S{XXXHHTINo=S${XXX}
Note:

See upload unified template function for field description

To delete specified unified template of the user

For how the result of command execution is replied, see the Reply Command function. For the Return
value, see Appendix 1. The format of returned content is:

ID=${XXX}&Return=${XXX}&CMD=DATA

User Photo

The command format is:

C: ${CmdID}: DATAS{SP}DELETES{SP}USERPICS{SP}PIN=S{XXX}
Note:

PIN=${XXX}: User ID

To delete specified user photo of the user

For how the result of command execution is replied, see the Reply Command function. For the Return
value, see Appendix 1. The format of returned content is:

ID=${XXX}&Return=${XXX}&CMD=DATA

Comparison Photo

The command format is:

C:${CmdID}:DATAS{SP}DELETES{SP}BIOPHOTOS{SP}PIN=${XXX}
Note:

PIN=${XXX}: User ID

To delete specified comparison photo of the user

Page |78

PUSH SDK Attendance PUSH Communication Protocol

For how the result of command execution is replied, see the Reply Command function. For the Return
value, see Appendix 1. The format of returned content is:

ID=${XXX}&Return=${XXX}&CMD=DATA

Short Message

The command format is:

C:${CmdID}:DATAS{SP}DELETES{SP}SMSS${SPIUID=${XXX}
Note:
UID=%{XXX}: short message number, supporting only integers.

For how the result of command execution is replied, see the Reply Command function.For the Return
value, see Appendix 1. The format of returned content is:

ID=${XXX}&Return=${XXX}&CMD=DATA

Work Code

The command format is:

C:${CmdID}:DATAS{SP}DELETES{SP}WORKCODES${SP}CODE=${XXX}
Note:
CODE=5%{XXX} : Working code

For how the result of command execution is replied, see the Reply Command function.For the Return
value, see Appendix 1. The format of returned content is:

ID=${XXX}&Return=${XXX}&CMD=DATA
Publicity Picture

The command format is:

C:${CmdID}:DATAS{SPIDELETES{SP}ADPICS{SP}Index=${XXX} Note: Index=${XXX}: Image index

For how the result of command execution is replied, see the Reply Command function.For the Return
value, see Appendix 1. The format of returned content is:

ID=${XXX}&Return=${XXX}&CMD=DATA

Page |79

PUSH SDK Attendance PUSH Communication Protocol

QUERY Subcommand

To query data, the command format is:

C: ${CmdID}: DATAS{SP}YQUERY${SP}${TableName}${SP}${DataRecord}
Note:

QUERY: This description is used to represent the operation of querying data.
${TableName}: Different service data table names. For example, the user information is USERINFO, and th
e following describes specific supported data.

${DataRecord}: Condition for querying data. Different service data supports different conditions. The foll
owing describes the specifics.

® Attendance Record

The command format is:

C: ${CmdID}: DATAS{SP}YQUERY${SPIATTLOGS{SP}StartTime=S{XXX}${HT}EndTime=${XXX}
Note:

StartTime=${XXX}: Query starting time, in the format of XXXX-XX-XX XX: XX: XX. For example, 2015-07-29
00: 00: 00

EndTime=${XXX}: Query ending time, in the format of XXXX-XX-XX XX: XX: XX. For example, 2015-07-29
23:59:59

For how the result of command execution is replied, see the Reply Command function. For the Return
value, see Appendix 1. The format of returned content is:

ID=${XXX}&Return=${XXX}&CMD=DATA

To query the attendance record within specified time period. For how to upload, see "Uploading
Attendance Record".

® Attendance Photo

The command format is:

C: ${CmdID}: DATAS{SP}QUERYS${SPIATTPHOTOS{SP}StartTime=${XXX}${HT}EndTime=${XXX}
Note:

StartTime=${XXX}: Query starting time, in the format of XXXX-XX-XX XX: XX: XX. For example, 2015-07-29
00: 00: 00

EndTime=${XXX}: Query ending time, in the format of XXXX-XX-XX XX: XX: XX. For example, 2015-07-29
23:59:59

Page |80

PUSH SDK Attendance PUSH Communication Protocol

For how the result of command execution is replied, see the Reply Command function. For the Return
value, see Appendix 1. The format of returned content is:

ID=${XXX}&Return=${XXX}&CMD=DATA

To query the attendance photo within specified time period. For how to upload, see “Uploading
Attendance Photo”.

® UserInformation

The command format is:

C: ${CmdID}: DATAS{SP}QUERY${SP}USERINFOS{SPIPIN=S${XXX}
Note:
PIN=S${XXX}: User ID

For how the result of command execution is replied, see the Reply Command function. For the Return
value, see Appendix 1. The format of returned content is:

ID=${XXX}&Return=${XXX}&CMD=DATA

To query the basic information of specified user. For how to upload, see “Uploading User Information”.
® Fingerprint Template

The command format is:

C: ${CmdID}: DATAS{SP}QUERYS${SP}FINGERTMPS{SP}PIN=${XXX}${HT}FingerID=5{XXX}
Note:

PIN=${XXX}: User ID

FingerID=${XXX}: Finger number, valued from 0 - 9.

For how the result of command execution is replied, see the Reply Command function. For the Return
value, see Appendix 1. The format of returned content is:

ID=5${XXX}&Return=5${XXX}&CMD=DATA

To query the fingerprint template information of the user. When only the PIN information is transmitted,
the information about all fingerprint templates of the user is queried. For how to upload, see “Uploading
Fingerprint Template”.

® Unified Template

The command format is:

C:${CmdID}:DATAS{SP}QUERYS${SP}BIODATAS{SP}Type=5${XXX}

Page |81

PUSH SDK Attendance PUSH Communication Protocol

C:${CmdID}:DATAS{SP}QUERYS${SP}BIODATAS{SPIType=S${XXX}${HT}PIN=${XXX}
C:${CmdID}:DATAS{SP}QUERYS${SP}BIODATAS{SPIType=S${XXX}${HTIPIN=S{XXX}S{HT} No=${XXX}
Note:

Type=5{XXX} : Biometric Type

Value Meaning

0 Common

1 Fingerprint

2 Face

3 Voiceprint

4 Iris

5 Retina

6 Palmprint

7 Finger vein

8 Palm

9 Visible light face

PIN=${XXX} : User ID

No=S${XXX} : Biometric specific number, default value is 0.

[Fingerprint] The number is: 0-9, the corresponding fingers are: left hand: little finger / ring finger / midd
le finger / index finger / thumb, right hand: thumb / index finger / middle finger / ring finger / little finge
r.

[Finger vein]: the same as fingerprints

[Face]: Allis O

[Iris]: O for left eye, 1 for right eye

[Palm]: Ois left hand, 1 is right hand

For how the result of command execution is replied, see the Reply Command function. For the Return
value, see Appendix 1. The format of returned content is:

ID=${XXX}&Return=${XXX}&CMD=DATA

To query the unified template information of the specified type. When only the Type information is
transmitted, all unified template information of the specified type is queried. For how to upload, see
“Uploading Unified Template”.

CLEAR Command
Clearing Attendance Record
To clear the client attendance record, the command format is:
C: ${CmdID}: CLEARS{SP}LOG

Note:
CLEARS{SPILOG is used to describe this command.

Page |82

PUSH SDK Attendance PUSH Communication Protocol

For how the result of command execution is replied, see the Reply Command function. For the Return
value, see Appendix 1. The format of returned content is:

ID=${XXX}&Return=5${XXX}&CMD=CLEAR_LOG
Note:
CMD=CLEAR_LOG: CLEAR_LOG is used to describe this command.

Clearing Attendance Photo

To clear the client attendance photo, the command format is:

C: ${CmdID}: CLEARS{SP}PHOTO
Note:
CLEARS{SP}PHOTO is used to describe this command.

For how the result of command execution is replied, see the Reply Command function. For the Return
value, see Appendix 1. The format of returned content is:

ID=${XXX}&Return=${XXX}&CMD=CLEAR_PHOTO
Note:
CMD=CLEAR_PHOTO: CLEAR_PHOTO is used to describe this command.

Clearing All Data

To clear all client data, the command format is:

C: ${CmdID}: CLEARS{SP}DATA
Note:
CLEARS{SP}DATA is used to describe this command.

For how the result of command execution is replied, see the Reply Command function. For the Return
value, see Appendix 1. The format of returned content is:

ID=S${XXX}&Return=${XXX}&CMD=CLEAR_DATA
Note:
CMD=CLEAR_DATA: CLEAR_DATA is used to describe this command.

Clearing Unified Template
To clear client unified template data of the specified type, the command format is:

C:${CmdID}:CLEARS{SP}BIODATA
Note:

Page |83

PUSH SDK Attendance PUSH Communication Protocol

CLEARS{SP}BIODATA is used to describe this command.

For how the result of command execution is replied, see the Reply Command function. For the Return
value, see Appendix 1. The format of returned content is:

| ID=${XXX}&Return=${XXX}&CMD=CLEAR_BIODATA
Note:
CMD= CLEAR_BIODATA: CLEAR_BIODATA is used to describe this command.

Check Command

Checking Data Update

The client is required to read configuration information from the server and re-upload corresponding data
to the server based on the timestamp. For details, see "Initializing Information Exchange". Currently, only
the server resetting the timestamp to 0 is supported. For example, set parameter Stamp to 0. After reading
configuration parameters, the client conducts Uploading Attendance Record again, and the command
format is:

C: ${CmdID}: CHECK

Note:
CHECK is used to describe this command.

For how the result of command execution is replied, see the Reply Command function. For the Return
value, see Appendix 1. The format of returned content is:

ID=${XXX}&Return=${XXX}&CMD=CHECK

Checking and Transmitting New Data

The client immediately checks whether new data exists and transmits the new data to the server. The
command format is:

C: ${CmdID}: LOG
Note:
LOG is used to describe this command.

For how the result of command execution is replied, see the Reply Command function. For the Return
value, see Appendix 1. The format of returned content is:

ID=${XXX}&Return=${XXX}&CMD=LOG

Page |84

PUSH SDK Attendance PUSH Communication Protocol

Automatically Verifying Attendance Data

The server issues the verification for attendance records within a time period, start and end time of
uploading by the attendance equipment, as well as total number of records. The verification is achieved by
the server, and the command format is:

C: ${CmdID}: VERIFYS${SP}SUMS{SP}ATTLOGS{SP}StartTime=${XXX}${HT}EndTime=${XXX}

Note:

VERIFY${SP}SUM is used to describe this command

StartTime=${XXX}: Starting time of issuing by the server, in the format of XXXX-XX-XX XX: XX: XX. For exa

mple, 2015-07-29 00: 00: 00

EndTime=${XXX}: Ending time of issuing by the server, in the format of XXXX-XX-XX XX: XX: XX. For

example, 2015-07-29 00: 00: 00

For how the result of command execution is replied, see the Reply Command function(#replycmd). For the
Return value, see Appendix 1(#appendix1). The format of returned content is:

ID=${XXX}&Return=${XXX}&CMD=VERIFY${SP}SUM&StartTime=${XXX}&EndTime=${XXX}&AttlogSum=
SIXXX}

Note:

AttlogSum=${XXX}: Total number of attendance records within the period from starting to ending time

Configuring Option Command

Option for Setting the Client

To set the client configuration information, the command format is:

C: ${CmdID}: SETS${SP}OPTIONS{SP}${Key}=${Value}

Note:

SETS${SP}OPTION is used to describe this command.

The configuration information is set in the form of key-value, and this command supports only the confi
guration of single configuration information.

For how the result of command execution is replied, see the Reply Command function. For the Return
value, see Appendix 1. The format of returned content is:

ID=${XXX}&Return=${XXX}&CMD=SETS${SP}OPTION

Option for Refreshing the Client

The client reloads the configuration information. The command format is:

C: ${CmdID}: RELOADS{SP}OPTIONS

Page |85

PUSH SDK Attendance PUSH Communication Protocol

Note:
RELOADS{SP}OPTIONS is used to describe this command.

For how the result of command execution is replied, see the Reply Command function. For the Return
value, see Appendix 1. The format of returned content is:

ID=${XXX}&Return=${XXX}&CMD=RELOADS{SP}OPTIONS

Sending Client Information to the Server

The server gets information such as client configuration. The command format is:

C: ${CmdID}: INFO
Note:
INFO is used to describe this command.

For how the result of command execution is replied, see the Reply Command function. For the Return

value, see Appendix 1. The format of returned content is:
ID=${XXX}&Return=${XXX}&CMD=INFOS${LF}${Key}=${Value}${LF}${Key}=${Value}${LF}${Key}=${Value}
${LF}${Key}=${Value}......

Note:
CMD=INFO is followed by specific customer configuration information, in the form of key-value.

File Command

Getting File in the Client

The client sends a server-specified file to the server. The command format is:

C: ${CmdID}: GetFileS$S{SP}${FilePath}
Note:

GetFile is used to describe this command.
${FilePath}: File in the client system

For how the result of command execution is replied, see the Reply Command function. For the Return
value, see Appendix 1. The format of returned content is:

ID=${XXX}${LF}SN=${SerialNumber}${LF}FILENAME=${XXX}${LF}CMD=GetFile${LF}Return=${XXX}${LF}C
ontent=${BinaryData}

Note:

Return=3${XXX}: Size of returned file.

Content=${BinaryData}: Binary data flow of the transmitted file

Page |86

PUSH SDK Attendance PUSH Communication Protocol

Sending File to the Client

Function 1

The equipment is required to download a file from the server and saves the file in a specified folder. (After
being downloaded, a .tgz file is automatically decompressed to the specified directory of FilePath or
/mnt/mtdblock if no directory is specified. For a file in another format, the file save path and filename need
to be specified.) This file must be provided by the server by HTTP, as well as the URL for obtaining this file.
If the URL starts with "http://", the equipment deems the URL as a complete URL address, otherwise, the
equipment appends the server's /iclock/ address to specified URL. The command format is:

C: ${CmdID}: PutFile${SP}${URL}${HT}${FilePath}

Note:

GetFile is used to describe this command.

${URL}: Address of the file to be downloaded from the server

${FilePath}: Destination path for the file to be saved on the client

Example 1: PutFile file/fw/X938/main.tgz main.tgz or PutFile file/fw/X938/main.tgz requires the equipm
ent to download http: //server/iclock/file/fw/X938/main.tgz, and decompress main.tgz into the folder of
/mnt/mtdblock.

Example 2: PutFile file/fw/X938/main.tgz /mnt/ requires the equipment to download http: //server/icloc
k/file/fw/X938/main.tgz, and decompress main.tgz into the folder of /mnt/.

Example 3: PutFile file/fw/X938/ssruser.dat /mnt/mtdblock/ssruser.dat requires the equipment to downl
oad http: //server/iclock/file/fw/X938/ssruser.dat, and remain the file to be /mnt/mtdblock/ssruser.dat.

For how the result of command execution is replied, see the Reply Command function. For the Return
value, see Appendix 1. The format of returned content is:

ID=${XXX}S{LF}Return=S${XXX}${LF}CMD=PutFile
Note:
Return=${XXX}: Size of the returned file

Function 2

C:${CmdID}:PutFile${SP}${URL}${HT}${FilePath}${HT}Action=${Value}

Note:

Use PutFile to describe the command.

${URL} : Address of the files to be downloaded from the server.

${FilePath} : Destination path where the files are stored in the client.

Action: describes what action to take after the file downloading is complete, supporting the following at
present:

Action=SyncData: represents that the device is required to synchronize the data of the same data type w
ith those in the downloaded files, that is, overwriting the old data in the device. The action requires two
additional parameters, TableName and RecordCount. The complete command is as follows:
C:${CmdID}:PutFile${SP}S{URL}${HT}S{FilePath}${HT}Action=${Value}${HT}TableName=${Value}${HT}Rec
ordCount=5${Value}

TableName: represents the data type, supporting the following:

${Value} Data type

Page |87

PUSH SDK Attendance PUSH Communication Protocol

USERINFO User data
FINGERTMP Fingerprint data

FACE Face data
RecordCount: Number of records in the data packet.

Action=AppendData: represents that the data in the downloaded files should be appended to the devi
ce. The complete command is as follows:
C:${CmdID}:PutFile${SP}S{URL}${HT}S{FilePath}${HT}Action=AppendData
The format of the content in the compressed package is the same as that of distributed data commands,
such as:

C:123:DATA UPDATE USERINFO PIN=1 Name=1 Pri=0 Passwd=1 Grp=1

C:124:DATA UPDATE FINGERTMP PIN=1 FID=11 SIZE=28 VALID=1 TMP=c2FmZHNhd3Jyd3JlcmVy
ZXJlene=

C:125:DATA UPDATE FACE PIN=1 FID=0 SIZE=28 VALID=1 TMP=c2FmZHNhd3Jyd3JlcmVyZXlJIcnc

C:126:DATA UPDATE FACE PIN=1 FID=1 SIZE=28 VALID=1 TMP=c2FmZHNhd3Jyd3JlcmVyZXJlcnc
C:127:DATA UPDATE FACE PIN=1 FID=2 SIZE=28 VALID=1 TMP=c2FmZHNhd3Jyd3JlcmVyZXJlcnc
C:128:DATA UPDATE FACE PIN=1 FID=3 SIZE=28 VALID=1 TMP=c2FmZHNhd3Jyd3JlcmVyZXlJlcnc
C:129:DATA UPDATE FACE PIN=1 FID=4 SIZE=28 VALID=1 TMP=c2FmZHNhd3Jyd3JlcmVyZXJlcnc
C:130:DATA UPDATE FACE PIN=1 FID=5 SIZE=28 VALID=1 TMP=c2FmZHNhd3Jyd3JlcmVyZXJlcnc
C:131:DATA UPDATE FACE PIN=1 FID=6 SIZE=28 VALID=1 TMP=c2FmZHNhd3Jyd3JlcmVyZXJlcnc
C:132:DATA UPDATE FACE PIN=1 FID=7 SIZE=28 VALID=1 TMP=c2FmZHNhd3Jyd3JlcmVyZXJlcnc
C:133:DATA UPDATE FACE PIN=1 FID=8 SIZE=28 VALID=1 TMP=c2FmZHNhd3Jyd3JIcmVyZXJlcnc
C:134:DATA UPDATE FACE PIN=1 FID=9 SIZE=28 VALID=1 TMP=c2FmZHNhd3Jyd3JlcmVyZXJlcnc
C:135:DATA UPDATE FACE PIN=1 FID=10 SIZE=28 VALID=1 TMP=c2FmZHNhd3Jyd3JlcmVyZXJlcn

C:136:DATA UPDATE FACE PIN=1 FID=11 SIZE=28 VALID=1 TMP=c2FmZHNhd3Jyd3JlcmVyZXJlcn

See the format of returned content as follows:

ID=S${XXX}S{LFIReturn=S${XXX}${LF}CMD=PutFile
Note:
Return=${XXX}: Size of the returned file.

Page |88

PUSH SDK Attendance PUSH Communication Protocol

Remote Enrollment Command

Enrolling User Fingerprint

The fingerprint enroliment is initiated by the server and conducted on the client. The command format is:

C: ${CmdID}: ENROLL_FPS{SPIPIN=S${XXX}S${HTIFID=S${XXX}S${HTIRETRY=${XXX}${HT}IOVERWRITE=${XXX}
Note:

ENROLL_FP is used to describe this command.

PIN=${XXX}: Enrolled user ID

FID=${XXX}: Enrolled fingerprint number

RETRY=S${XXX}: Number of retries required if enrollment fails

OVERWRITE=S${XXX}: Whether to overwrite the fingerprint. 0 means the fingerprint of corresponding use
r exists and will not be overwritten and error information is returned. 1 means the fingerprint of correspo
nding user exists and will be overwritten.

For how the result of command execution is replied, see the Reply Command function. For the Return
value, see Appendix 1. The format of returned content is:

ID=${XXX}&Return=${XXX}&CMD=ENROLL_FP

Enrolling Card Number

The card number enrollment is initiated by the server and conducted on the client. The command format
is:

CXXX:ENROLL_MF PIN=%s\tRETRY=%d
Example: C:123:ENROLL_MF PIN=408\tRETRY=3
Note:

PIN - User ID

RETRY - Number of retries

Returned value:

0 Command executed successfully

-1 Parameter error

-3 Access error

Register failed retries

Log out over time

Click Esc to exit the registration screen

(o), QNN

For how the result of command execution is replied, see the Reply Command function. For the Return
value, see Appendix 1. The format of returned content is:

ID=${XXX}&Return=${XXX}&CMD=ENROLL_MF

Page |89

PUSH SDK Attendance PUSH Communication Protocol

Enrolling Face, Palm Print (Unified Templates)

The fingerprint enroliment is initiated by the server and conducted on the client. The command format is:

ENROLL_BIO TYPE=%?\tPIN=%?tCardNo=%?\tRETRY=%?\tOVERWRITE=%?

TYPE:

0 /**< General template */
1 /*<Fingerprint */

2 /**<Face*/

3 /**<\Voice ¥/

4 [**<ris ¥/

5 /**<Retina*/

6 /**<Palm vein */

7 /**<Finger vein */

8 /**< Palm print*/

9

/¥*< Visible light face */

PIN: Enrolled user ID

CardNo: Enrolled card number

RETRY: Number of retries required if enroliment fails

OVERWRITE: Whether to overwrite the face. 0 means the face of corresponding user exists and will not
be overwritten and error information is returned. 1 means the face of corresponding user exists and will
be overwritten.

For how the result of command execution is replied, see the Reply Command function. For the Return

value, see Appendix 1. The format of returned content is:

ID=${XXX}&Return=${XXX}&CMD=ENROLL_BIO

Control Command

Rebooting the Client

To reboot the client, the command format is:

C: ${CmdID}: REBOOT
Note:
REBOOT is used to describe this command.

For how the result of command execution is replied, see the Reply Command function. For the Return

value, see Appendix 1. The format of returned content is:

ID=${XXX}&Return=${XXX}&CMD=REBOOT

Page |90

PUSH SDK Attendance PUSH Communication Protocol

Outputting the Door Unlocking Signal

The access equipment outputs the door unlocking signal. The command format is:

C: ${CmdID}: AC_UNLOCK
Note:
AC_UNLOCK is used to describe this command.

For how the result of command execution is replied, see the Reply Command function. For the Return
value, see Appendix 1. The format of returned content is:

ID=${XXX}&Return=${XXX}&CMD=AC_UNLOCK

Canceling the Alarm Signal Output

The access equipment cancels the alarm signal output. The command format is:

C: ${CmdID}: AC_UNALARM
Note:
AC_UNALARM is used to describe this command.

For how the result of command execution is replied, see the Reply Command function. For the Return
value, see Appendix 1. The format of returned content is:

ID=${XXX}&Return=${XXX}&CMD=AC_UNALARM

Other Commands

Executing the System Command

The server issues operating system commands which are supported by the client which send execution
results to the server. The command format is:

C: ${CmdID}: SHELLS{SP}${SystemCmd}

Note:

SHELL is used to describe this command

${SystemCmd}: Operating system command. For example, when the client is linux system, 1s is
supported.

For how the result of command execution is replied, see the Reply Command function. For the Return
value, see Appendix 1. The format of returned content is:

ID=${XXX}${LF}SN=${SerialNumber}${LF}Return=3${XXX}${LF}CMD=Shell${LF}FILENAME=shellout.txt${LF}

Page |9

PUSH SDK Attendance PUSH Communication Protocol

Content=${XXX}

Note:

Return=${XXX}: The value is the returned value for the system command.
Content=%{XXX}: The value is the output content of the system command.

Online Update

Application scenario: Firmware used to remotely upgrade client devices from server software.

Method 1: Remotely upgrade the client's firmware, compatible controller and new architecture all-in-one
machine. Upgrade files need to be converted by the server and then sent to the client.

Format:

The server issues the command:
C:${CmdID}:UPGRADES(SP)checksum=5{XXX},url=$(URL),size=${XXX}

The client downloads the upgrade package from the URL that comes with the command:
GET /iclock/file?SN=S(SerialNumber)&url=$(URL) HTTP/1.1

The client uploads the execution results:
ID=${CmdID}&Return=${XXX}&CMD=UPGRADE

Annotation:

Checksum: Represents md5 checksum

Url: Represents the download resource address of the upgrade file, and the upgrade file name is emfw.cf
9

Size represents the original file size.

Note:

In this method, the firmware update file is converted to base64 format data by the server when it is issue
d. The file that the client receives needs to be converted to binary format and named emfw.cfg

Example:

The server issues the firmware upgrade command:
C:384:UPGRADE

checksum=a5bf4dcd6020f408589224274aab132d,url=http*//localhost*8088\fireware\F20\admin\emfw.
cfg,size=2312
The client requests to download the upgrade package:

GET /iclock/file?SN=3383154200002&url=http://192.168.213.17:8088/fireware/F20/admin/emfw.cfg
HTTP/1.1

Cookie: token=af65a75608cf5b80fbb3b48f0b4dfo5a
Host: 192.168.213.17:8088

The client uploads successful execution results:
ID=384&Return=0&CMD=UPGRADE

Page |92

PUSH SDK Attendance PUSH Communication Protocol

Method 2: Remote upgrade client firmware, directly obtain files, no need to transfer format, the client
directly obtain files.

Format:

The server issues the command:
C:${CmdID}:UPGRADES(SP)type=1,checksum=${XXX},size=${XXX},url=$(URL)
The client requests to download the upgrade package:

GET /iclock/file?SN=$(SerialNumber)&url=$(URL) HTTP/1.1

Cookie: token=af65a75608cf5b80fbb3b48f0b4dfo5a

Host: 192.168.213.17:8088

The client uploads the execution results:

ID=${CmdID}&Return=${XXX}&CMD=UPGRADE

Annotation:

Type: 1 means to get the upgrade file from the url. For the time being, only 1 is supported.
Checksum: Represents md5 checksum

Url: Represents the download resource address of the upgrade file, and the upgrade file name is emfw.cf
g

Size represents the upgrade package size

Note:

In this method, what the client gets directly is the firmware update file, which does notneed to be conve
rted to another format.

Example:

The server issues the firmware upgrade command:
C:123:UPGRADE

type=1,checksum=0qoier9883kjankdefi894eu,size=6558,url=http://192.168.0.13:89/data/emfw.cfg
The client requests to download the upgrade package:

GET /iclock/file?SN=3383154200002&url=http://192.168.0.13:89/data/emfw.cfg HTTP/1.1
Cookie: token=af65a75608cf5b80fbb3b48f0b4df95a
Host: 192.168.0.13:89

The client uploads successful execution results:
ID=384&Return=0&CMD=UPGRADE

Background verification

Application scenario: After the fingerprint/face verification on the attendance device is successful, the
personnel number will be uploaded to the back-end system by push, and the back-end system will return
a result (whether the verification is allowed or not) to the attendance device after receiving the personnel
number for logical judgment.

Page |93

PUSH SDK

Attendance PUSH Communication Protocol

Format:

Client data sending

POST /iclock/cdata?SN=${SerialNumber}&type=PostVerifyData HTTP/1.1

Host: ${ServerlP}:${ServerPort}

${PostData} //Uploaded data

Annotation:

HTTP request method: GET method

URI: /iclock/cdata

HTTP protocol version: 1.1

Client configuration information:

SN: ${Required} Serial number of the client

Type =PostRecordData means to upload recorded data
Host header field: ${Required}

Other header fields: ${Optional}

Normal server response
HTTP/1.1 200 OK

Date: ${XXX}
Content-Length: ${XXX}

OK

Annotation:

HTTP status line: Defined with standard HTTP protocol
HTTP response header field:

Date header field: ${Required} uses this header field to synchronize server time, and the time format uses

GMT format, such as Date: Fri, 03 Jul 2015 06:53:01 GMT

Content-Length header field: According to the HTTP 1.1, this header field is generally used to specify the
data length of the response entity. If the response entity size is uncertain, head fields of Transfer-
Encoding: chunked, Content-Length and Transfer-Encoding are supported, all of which are standard

definitions of HTTP and are not described in details here.

Response entity: When the server normally receives data and successfully processes data, OK is replied.

When an error occurs, the error description is replied.

Parameter configuration: PostSelfDefineDataType=PostVerifyData

Page |94

PUSH SDK Attendance PUSH Communication Protocol

Command Reply

After Getting Command Issued by the Server, the client needs to reply corresponding command.

A request message from the client:

POST /iclock/devicecmd?SN=S${SerialNumber}
Host: ${ServerlP}: ${ServerPort}
Content-Length: ${XXX}

......

${CmdRecord}

Annotation:

HTTP request method: GET method

URI: /iclock/devicecmd

HTTP protocol version: 1.1

Client configuration information:

SN: ${Required} Serial number of the client

Host head field: ${Required}

Content-Length header field: ${Required}

Other header fields: ${Optional}

Response entity: ${CmdRecord}, record of replied commands. The reply content all contains the ID\Retur
nN\CMD information, with the following meanings:

ID: Number of the command issued by the client

Return: Returned result after the client executes the command

CMD: Description of the command issued by the server

A small number of replies contain other information. For specific reply content format, see the descriptio
n of each command.

${LF}is used to connect multiple command reply records.

A normal response message from the server:

HTTP/1.1 200 OK
Date: ${XXX}
Content-Length: 2

Annotation:

HTTP status line: Defined with standard HTTP protocol

HTTP response header field:

Date header field: ${Required} This header field is used for synchronization with the server time, in GMT f
ormat. For example, Date: Fri, 03 Jul 2015 06: 53: 01 GMT

Page |95

PUSH SDK

Attendance PUSH Communication Protocol

Content-Length header field: Based on HTTP 1.1, this header field is usually used to specify the data leng
th of the response entity. If the response entity size is uncertain, head fields of Transfer-Encoding: chunk
ed, Content-Length and Transfer-Encoding are supported, all of which are standard definitions of HTTP a

nd are not described in details here.

Example:

A request from the client:

POST /iclock/devicecemd?SN=0316144680030 HTTP/1.1

Host: 58.250.50.81: 8011
User-Agent: iClock Proxy/1.09
Connection: close

Accept: */*

Content-Length: 143

ID=info8487&Return=0&CMD=DATA
ID=info8488&Return=0&CMD=DATA
ID=info8489&Return=0&CMD=DATA
ID=info7464&Return=0&CMD=DATA
ID=fp7464&Return=0&CMD=DATA

A response from the server:

HTTP/1.1 200 OK

Server: nginx/1.6.0

Date: Tue, 30 Jun 2015 01: 24: 48 GMT
Content-Type: text/plain
Content-Length: 2

Connection: close

Pragma: no-cache

Cache-Control: no-store

OK

Page |9

PUSH SDK Attendance PUSH Communication Protocol

Remote Attendance

When attendance is required for a user on a business trip and no information about this user is stored in
the attendance machine, the user can check on attendance remotely. Current application scenario: The
user uses the attendance machine keypad to directly enter ID and press OK, and then the attendance
machine requests the server to issue all information about this user (basic information and fingerprint
information). After that, the user checks on attendance. After being downloaded, the user information is
stored in the attendance machine for a period of time. The saving time is set via a parameter. After this
period of time, the user information will be deleted.

A request message from the client:

GET /iclock/cdata?SN=5{SerialNumber}&table=RemoteAtt&PIN=${XXX} HTTP/1.1
Host: ${ServerlP}: ${ServerPort}

Annotation:

HTTP request method: GET method
URI: /iclock/cdata
HTTP protocol version: 1.1
Client configuration information:
SN: ${Required} Serial number of the client
table=RemoteAtt: Acquiring user information for remote attendance
PIN=${XXX}: ID information to be required
Host head field: ${Required}
Other header fields: ${Optional}

A normal response message from the server:

When user information exists, the reply information is:
HTTP/1.1 200 OK

Date: ${XXX}

Content-Length: ${XXX}

DATAS{SP}UPDATES{SP}USERINFOS{SP}PIN=${XXX}${HT}Name=${XXX}${HT}Passwd=${XXX}${HT}Card=
SIXXXIS{HTIGrp=S{XXX}IS{HTITZ=S{XXX}S{HT}Pri=${XXX}
DATAS{SP}UPDATES{SP}FINGERTMPS{SP}PIN=${XXX}S{HTIFID=${XXX}${HT}Size=${XXX}${HT}Valid=${XX
XIS{HTITMP=S5{XXX}

Annotation: ${LF} is used to connect multiple data records of the response entity. For specific data format,
see Issuing User Information and Issuing Fingerprint Template.

Page |97

PUSH SDK Attendance PUSH Communication Protocol

Appendix 1

0 Successful
-1 The parameter is incorrect.
-2 The transmitted user photo data does not match the given size.
-3 Reading or writing is incorrect.
-9 The transmitted template data does not match the given size.
-10 The user specified by PIN does not exist in the equipment.
-1 The fingerprint template format is illegal.
-12 The fingerprint template is illegal.
-1001 Limited capacity
-1002 Not supported by the equipment
-1003 Command execution timeout
-1004 The data and equipment configuration are inconsistent.
-1005 The equipment is busy.
-1006 The data is too long.
-1007 Memory error
-1008 Failed to get server data

Enroll_FP/Enroll_BIO Error
Code

Description

2 Enroll Fingerprint: Fingerprints of the user already exist.

Enroll Fingerprint: Registration fails, usually caused by the inferior

4 quality of fingerprints or the inconsistency of the three fingerprints.

5 Enroll Fingerprint: Registered fingerprints already exist in the
fingerprint database.

6 Enroll Fingerprint: Registration is cancelled.

5 Enroll Fingerprint: Registration cannot proceed due to the busy

device.

Page |98

PUSH SDK

Attendance PUSH Communication Protocol

PutFile
(Action=SyncData) Description
Error Code
n>0 Data is synchronized, with n commands successfully processed.
Appendix 2
83 Simplified Chinese
69 English
97 Spanish
70 French
66 Arabic
80 Portuguese
82 Russian
71 German
65 Persian
76 Thai
73 Indonesian
74 Japanese
75 Korean
86 Vietnamese
116 Turkish
72 Hebrew
90 Czech
68 Dutch
105 Italian
89 Slovak
103 Greek
112 Polish
84 Traditional Chinese

Page |99

PUSH SDK

Attendance PUSH Communication Protocol

Appendix 3

Page |100

0
1
2

10
11

12
13
14
15
16
17
18
19
20
21

22
23
24
25
26
27

Startup
Shutdown
Authentication fails
Alarm
Access menu
Change settings
Enroll fingerprint
Enroll password
Enroll HID card
Delete user
Delete fingerprint
Delete password
Delete RF card
Clear data
Create MF card
Enroll MF card
Register MF card
Delete MF card registration
Clear MF card content
Move enrolled data into the card
Copy data in the card to the machine
Set time
Delivery configuration
Delete entry and exit records
Clear administrator privilege
Modify access group settings
Modify user access settings

Modify access time period

PUSH SDK Attendance PUSH Communication Protocol

28 Modify unlocking combination settings
29 Unlock

30 Enroll a new user

31 Change fingerprint attribute

32 Duress alarm

Appendix 4

(o) ti
Operation object 1 | Operation object2 Operation object3 Operation object 4

If 1:1 authentication

2 is used, this is user
ID.
For alarm causes,
3 Alarm see Appendix 5.
Sequer.mc'e numt.>er Value after
5 of modified setting .)
. modification
item
6 User ID Sequence numper . Leng.th of the
of the fingerprint fingerprint template
9 User ID
10 User ID
11 User ID
12 User ID
Appendix 5
e s

50 Door Close Detected

51 Door Open Detected

53 Out Door Button

54 Door Broken Accidentally

55 Machine Been Broken

58 Try Invalid Verification

Page |10

PUSH SDK Attendance PUSH Communication Protocol

65535 Alarm Cancelled

Appendix 6

Protocol version rules

* Released version of the protocol:

2.2.14

2.3.0

24.0

241

Encryption protocol version: 2.4.0 and above

e Device end:

The device pushes the protocol version currently used by push to the server through the following proto
col

GET /iclock/cdata?SN=5%{SerialNumber}&options=all&pushver=${XXX}&language=${XXX}&pushcommke
y=5${XXX}

The server returns the release protocol version used by the server for this request and returns the protoc
ol version to the device.

PushProtVer= XXX. If this parameter is not returned, the default protocol version used by the server is 2.
2.14.

The device interacts with the lower version based on the version of the protocol used by the current
push and that returned by the server.

e Server-side:

The server side obtains the protocol version used by push on the device side according to the following r
equest. If there is no pushver field, then the default device USES the 2.2.14 protocol version.

GET /iclock/cdata?SN=5%{SerialNumber}&options=all&pushver=${XXX}&language=${XXX}&pushcommke

y=5${XXX}

The service side need to return which released software use protocol version:

PushProtVer = XXX

The server interacts with the lower version based on the protocol version used by the software and the o
ne uploaded by the device.

Page |102

PUSH SDK

Attendance PUSH Communication Protocol

Appendix 7

Page |103

Finger vein or face or fingerprint or card or password (automatic

0

10
11
12
13

14

15

16

17

18

19

20

21

22

23

24

identification)

Only fingerprint

User ID verification

Only password

Only card

Fingerprint or password
Fingerprints or card

Card or password

User ID + fingerprint
Fingerprint + password

Card + fingerprint

Card + password

Fingerprint + password + card
User ID + fingerprint + password

User ID + fingerprint or Card + fingerprint

Face

Face + fingerprint

Face + password

Face + card

Face + fingerprint + card

Face + fingerprint + password
Finger vein

Finger vein + password
Finger vein + card

Finger vein + password + card

PUSH SDK Attendance PUSH Communication Protocol

25 Palm print
26 Palm print + card
27 Palm print + face
28 Palm print + fingerprint
29 Palm print + fingerprint + face
200 Other
Appendix 8

Data encryption key exchange scheme

Device Server

s The device sends the device publickey P1 P Caie
algorithr rary algorithm library
to uc‘ll ‘ e's tothe server <l

public

Exchange of public key
5 ™ The server returns the server public key P2 ol
i tothe device togetth

public key P1

The device factor R1 is sent to the server
through the server's public key encryption

Exchange factor

Server factor R2 is sent to the device
through device public key encryption

Both the device and the server have the
factors R1 and R2, and then the device
and the server use the same obfuscation
algorithm to generate the sessionkey.
The data transmitted later uses this
value as the key for symmetric encryption.
Data encryption and decryption

* Algorithm: Encryption algorithm library will be unified packaging, the device used for the static library.
* Scheme:

a) The asymmetric encrypted public-private key is initialized when the device and server reconnect.

Page |104

PUSH SDK

Attendance PUSH Communication Protocol

b) The device and server exchange public keys:

>

>

>

The device sends the device public key P1 to the server.
The server returns the server public key P2 to the device.

Complete the public key exchange. Both the device and the server have public keys P1 and
P2.

¢) Device and server exchange factors:

>

>

>

The device generates the factor R1 and sends it to the server via the server's public key

encryption.
The server uses the server private key to solve the device factor R1.

The server generates factor R2 and sends it to the device through the device's public key

encryption.
The device uses the device private key to solve the server factor R2.

Complete the factor exchange. Both the device and the server have factors R1 and R2.

d) Device and server at the same time have factor R1, R2, and then confused device and a server

using the same algorithm was born into a session key (sessionKey), after the transfer of data to

value as the symmetric encryption keys.

Compatibility scheme

Compeatibility is achieved according to the protocol version used by the device and server, as follows:

e Casel

Page |105

Device Server

Options=all requests the push protocol version
of the push device or the push protocol version
N

7z

The server returns, the latter does not return
the version of the protocol used by the server
for development, neither protocol supports
data encryption

Clear transmission of communication data

A4

PUSH SDK Attendance PUSH Communication Protocol
e (Case2
Device Server
ey Options=all requests the protocol version s
algorithm library of the push device algorithm library
to get the device's to set the device
L r——— e > e
SR :The serverreturns the version of the S
gprotocol usedinserverdevelopment.
Call the g i Call th
a\gorifhmliebrary (BOth prOtOCOIS support data encryptlon. E dlgovilahmliebrary
set the server 3 P : get the device'
topjéﬁci;fpg Send the device publickey P1 to the server. & Qt.thﬁfl k(;;\pfe S
The server returns the server public key
P2tothe device Lot e e
¥ private key to solve
‘Device factor R1is sentto the server l;‘e ?@F‘{C]
: & 5 actor
‘through server public key encryption
The device 5 3
uses the device Server factor R2issent to the device
R ‘through device public key encryption
factor R2 K
SBoth the device and the server have the
factors R1 and R2, and then the device
and the server use the same obfuscation;
algorithm to generate the sessionkey.:
The data transmitted later uses this:
ivalue as the key for symmetric encryption.:
Sign the communication data,
using the CRC32 check algorithm
Annotation:

a) The device determines whether to use HTTPS or HTTP based on the server address set.

b) In the first request protocol header of the existing device, pushver field is added to the current
communication protocol version number of the device, and PushProtVer is added to the data
returned by the software to indicate which protocol version the software was developed on. The
device and server take the lowest protocol version and communicate according to the lowest

protocol version.

Case 1: When protocol versions of both the server and the device are not supported, explicit
transmission of data communication is used.

Case 2: Set a protocol version that supports data encryption. When both the server and the
device support the protocol version, use the data encryption scheme.

The order of interaction is as follows:

» The new protocol exchanges the public keys P1 and P2 of the device and server.

Page |106

PUSH SDK Attendance PUSH Communication Protocol

» The new protocol exchanges the factors R1 and R2 of the device and server.

» (Crc32 verification is carried out for the signature of communication data. Both the device and the
server have factors R1 and R2 at the same time. Then, the device and the server use the same

obconfusion algorithm to generate sessionKey (sessionKey).

Appendix 9
00000000 Succeed
DO1E0001 Face detection failed
DO01E0002 Face occlusion
DO1E0003 Lack of clarity
DO1E0004 Face angle is too big
DO1E0O005 Live detection failed
DO1E0006 Extraction template failed

According to the error code generation end + module + type + error value definition
Error generator (first)

D: error code returned by the device

S: error code returned by the software
Module (2nd ~ 3rd)
Device-end:

01: PUSH communication module

02: Template processing module

03: Hardware interaction module

04: PULL communication module

05: Offline communication module

06: Data transfer module

07: Licensing service module
Software-side:

Undetermined

Page |107

PUSH SDK

Attendance PUSH Communication Protocol

Type (fourth)

E: ERROR

Error value (5th ~ 8th)

Integer data

Appendix 10 Biometric Type Index Definition

Inde O
X
Type = Commo

n
type
MultiBioPhotoSupport
MultiBioDataSupport

MultiBioVersion

MaxMultiBioDataCount

Page |108

Fingerprint

2 3 4 5 6 7 8 9
Near- Voiceprint Iri | Retina = Palmprint Finger Palm Visibl
infrared s vein vein e
face light

face
Biometrictype = 0-Common

Type 1-8
belongs to
near-infrared;
Type 9
belongs to
visible light.

Supports
biometric
photos

Supports bio-
templates

Supported
algorithms

Supports
maximum
number of bio-
templates.

1-Fingerprint

2-Near-infrared face

3-Voiceprint

4-Iris

5-Retina

6-Palmprint

7-Finger vein

8-Palm vein

9-Visible light face

The type is defined bit by bit. Different types are
separated by colons, 0 means not supported, 1 means
supported.

Such as: 0: 1: 1: 0: 0: 0: 0: 0: 0: 0, indicating support for
near-infrared fingerprint photo and face photo.

The type is defined bit by bit. Different types are
separated by colons, 0 means not supported, 1 means
supported.

Such as: 0: 1: 1: 0: 0: 0: 0: 0: 0: 0, indicating support for
near-infrared fingerprint template and face template.
The type is defined bit by bit. Different types are
separated by colons, 0 means not supported, non-0
means supported version number.

Such as: 0: 10: 0: 7: 0: 0: 0: 0: 0: 0, indicating support for
fingerprint algorithm10.0 and near-infrared face
algorithm?7.0.

The type is defined bit by bit. Different types are
separated by colons, 0 means not supported, non-0
means supported maximum capacity.

Such as: 0: 10000: 3000: 0: 0: 0: 0: 0: 0: 0, indicating
support for the maximum number of fingerprint
templates is 10000 and the maximum number of near-

PUSH SDK

Attendance PUSH Communication Protocol

MaxMultiBioPhotoCount

MultiBioDataCount

MultiBioPhotoCount

Page |109

Supports
maximum
number of
biometric
photos.

The current
capacity of
bio-templates

The current
capacity of
biometric
photos

infrared face templates is 3000.

The type is defined bit by bit. Different types are
separated by colons, 0 means not supported, non-0
means supported maximum capacity.

Such as: 0: 10000: 3000: 0: 0: 0: 0: 0: 0: 0, indicating
support for the maximum number of fingerprint
photos is 10000 and the maximum number of near-
infrared face photos is 3000.

The type is defined bit by bit. Different types are
separated by colons.

Such as: 0: 10000: 3000: 0: 0: 0: 0: 0: 0: 0, indicating the
current number of fingerprint templates is 10000 and
the current number of near-infrared face templates is
3000.

The type is defined bit by bit. Different types are
separated by colons.

Such as: 0: 10000: 3000: 0: 0: 0: 0: 0: 0: 0, indicating the
current number of fingerprint photos is 10000 and the
current number of near-infrared face photos is 3000.

